Introducing rice yield loss caused by weed competition into the SimulArroz model

Abstract: The objective of this work was to model weedy rice (Oryza sativa) and barnyard grass (Echinochloa spp.) competition with flood-irrigated rice, introducing it as a submodule into the SimulArroz model. The competition of both weeds with irrigated rice was modeled using the rectangular hyperbola equation. The “i” and “a” coefficients of the rectangular hyperbola for each of these weeds were obtained from the literature and from field experiments carried out in the state of Rio Grande do Sul, Brazil. In SimulArroz, yield loss was applied to penalize yield in all three technological levels (high, medium, and low) of physiological maturity. For weedy rice, the coefficient values of imean for the high, medium, and low technological levels were 1.04, 1.50, and 3.57 respectively, and, for barnyard grass, 4.70, 10.49, and 15.51 respectively. Coefficient “a” was 100 for weedy rice, and amean values for barnyard grass were 101.63, 104.92, and 96.88 for the high, medium, and low levels, respectively. The yield loss approach was suitable to model the competition of weedy rice and barnyard grass with irrigated rice. The submodule yield loss caused by the competition of weedy rice and barnyard grass with irrigated rice improves the predictive capacity of the SimulArroz model.

Saved in:
Bibliographic Details
Main Authors: Richter,Gean Leonardo, Streck,Nereu Augusto, Zanon,Alencar Junior, Ulguim,André da Rosa, Kruse,Nelson Diehl, Santos,Gionei Alves de Assis dos, Cera,Jossana Ceolin, Ribas,Giovana Ghisleni, Duarte Junior,Ary José, Pilecco,Isabela Bulegon
Format: Digital revista
Language:English
Published: Embrapa Secretaria de Pesquisa e Desenvolvimento 2019
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-204X2019000102508
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract: The objective of this work was to model weedy rice (Oryza sativa) and barnyard grass (Echinochloa spp.) competition with flood-irrigated rice, introducing it as a submodule into the SimulArroz model. The competition of both weeds with irrigated rice was modeled using the rectangular hyperbola equation. The “i” and “a” coefficients of the rectangular hyperbola for each of these weeds were obtained from the literature and from field experiments carried out in the state of Rio Grande do Sul, Brazil. In SimulArroz, yield loss was applied to penalize yield in all three technological levels (high, medium, and low) of physiological maturity. For weedy rice, the coefficient values of imean for the high, medium, and low technological levels were 1.04, 1.50, and 3.57 respectively, and, for barnyard grass, 4.70, 10.49, and 15.51 respectively. Coefficient “a” was 100 for weedy rice, and amean values for barnyard grass were 101.63, 104.92, and 96.88 for the high, medium, and low levels, respectively. The yield loss approach was suitable to model the competition of weedy rice and barnyard grass with irrigated rice. The submodule yield loss caused by the competition of weedy rice and barnyard grass with irrigated rice improves the predictive capacity of the SimulArroz model.