Continuous lactic fermentation of deproteinized sweet whey

Whey is a major water contaminant due to its high biochemical oxygen demand (BOD), stemming mainly from its lactose (milk sugar) content. The objetive of this research was to investigate the conversion of whey into useful, value-added products. Several methods have been developed already, the most important being dehydration, production of drinks, and conversion of the sugar component into organic acids. Lactic acid including its sodium, calcium, iron and antimony salts, is a valuable product in the alimentary industry and is also a raw material in the chemical industry. To maximize lactic acid production we determined the optimal dilution rate (D) carrying out eight fermentations, with D = 0.102 h-1, until the acid production was nil (D= 3.0 h-1). Working conditions were 45 ± 0.1 °C, pH 5.6 ± 0.2, and a cell concentration of 30 ± 4.0 g/L, using Lactobacillus bulgaricus, and deproteinized sweet whey as a substrate. Production of lactic acid and sodium lactate was between 0.5 and 24.37 g/L. Stability of production was reached in average after two retention times. Highest productivity was at D= 0.2 h-1 (2.5 g/Lh) , where only 30% of the lactose was consumed from the substrate . Highest lactose consumption was found at D= 0.102 h-1 (53.4%), where productivity was nearly maximal (2.49g/Lh), but acid concentration (26.6%) was considerably higher than at the corresponding dilution rate D= 0.2 h-1, which was 14.75 g/L.

Saved in:
Bibliographic Details
Main Authors: Trujillo, M., Suarez, F., Gallego, D.
Format: Digital revista
Language:spa
Published: Universidad Nacional de Colombia - Sede Bogotá - Instituto de Biotecnología 1998
Online Access:https://revistas.unal.edu.co/index.php/biotecnologia/article/view/29984
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:www.revistas.unal.edu.co:article-29984
record_format ojs
institution UNAL
collection OJS
country Colombia
countrycode CO
component Revista
access En linea
databasecode rev-biotecnologia-co
tag revista
region America del Sur
libraryname Sistema Nacional de Bibliotecas de la UNAL
language spa
format Digital
author Trujillo, M.
Suarez, F.
Gallego, D.
spellingShingle Trujillo, M.
Suarez, F.
Gallego, D.
Continuous lactic fermentation of deproteinized sweet whey
author_facet Trujillo, M.
Suarez, F.
Gallego, D.
author_sort Trujillo, M.
title Continuous lactic fermentation of deproteinized sweet whey
title_short Continuous lactic fermentation of deproteinized sweet whey
title_full Continuous lactic fermentation of deproteinized sweet whey
title_fullStr Continuous lactic fermentation of deproteinized sweet whey
title_full_unstemmed Continuous lactic fermentation of deproteinized sweet whey
title_sort continuous lactic fermentation of deproteinized sweet whey
description Whey is a major water contaminant due to its high biochemical oxygen demand (BOD), stemming mainly from its lactose (milk sugar) content. The objetive of this research was to investigate the conversion of whey into useful, value-added products. Several methods have been developed already, the most important being dehydration, production of drinks, and conversion of the sugar component into organic acids. Lactic acid including its sodium, calcium, iron and antimony salts, is a valuable product in the alimentary industry and is also a raw material in the chemical industry. To maximize lactic acid production we determined the optimal dilution rate (D) carrying out eight fermentations, with D = 0.102 h-1, until the acid production was nil (D= 3.0 h-1). Working conditions were 45 ± 0.1 °C, pH 5.6 ± 0.2, and a cell concentration of 30 ± 4.0 g/L, using Lactobacillus bulgaricus, and deproteinized sweet whey as a substrate. Production of lactic acid and sodium lactate was between 0.5 and 24.37 g/L. Stability of production was reached in average after two retention times. Highest productivity was at D= 0.2 h-1 (2.5 g/Lh) , where only 30% of the lactose was consumed from the substrate . Highest lactose consumption was found at D= 0.102 h-1 (53.4%), where productivity was nearly maximal (2.49g/Lh), but acid concentration (26.6%) was considerably higher than at the corresponding dilution rate D= 0.2 h-1, which was 14.75 g/L.
publisher Universidad Nacional de Colombia - Sede Bogotá - Instituto de Biotecnología
publishDate 1998
url https://revistas.unal.edu.co/index.php/biotecnologia/article/view/29984
work_keys_str_mv AT trujillom continuouslacticfermentationofdeproteinizedsweetwhey
AT suarezf continuouslacticfermentationofdeproteinizedsweetwhey
AT gallegod continuouslacticfermentationofdeproteinizedsweetwhey
AT trujillom fermentacionlacticaencontinuoapartirdesuerodulcedelechedesproteinizado
AT suarezf fermentacionlacticaencontinuoapartirdesuerodulcedelechedesproteinizado
AT gallegod fermentacionlacticaencontinuoapartirdesuerodulcedelechedesproteinizado
_version_ 1794799517927735296
spelling oai:www.revistas.unal.edu.co:article-299842016-07-18T16:11:09Z Continuous lactic fermentation of deproteinized sweet whey Fermentación láctica en contínuo a partir de suero dulce de leche desproteinizado Trujillo, M. Suarez, F. Gallego, D. Lactic acid sweet whey Lactobacillus bulgaricus permeate whey lactose whey proteins Ácido láctico lactosuero Lactobacillus bulgaricus Lactosa Proteínas del suero Whey is a major water contaminant due to its high biochemical oxygen demand (BOD), stemming mainly from its lactose (milk sugar) content. The objetive of this research was to investigate the conversion of whey into useful, value-added products. Several methods have been developed already, the most important being dehydration, production of drinks, and conversion of the sugar component into organic acids. Lactic acid including its sodium, calcium, iron and antimony salts, is a valuable product in the alimentary industry and is also a raw material in the chemical industry. To maximize lactic acid production we determined the optimal dilution rate (D) carrying out eight fermentations, with D = 0.102 h-1, until the acid production was nil (D= 3.0 h-1). Working conditions were 45 ± 0.1 °C, pH 5.6 ± 0.2, and a cell concentration of 30 ± 4.0 g/L, using Lactobacillus bulgaricus, and deproteinized sweet whey as a substrate. Production of lactic acid and sodium lactate was between 0.5 and 24.37 g/L. Stability of production was reached in average after two retention times. Highest productivity was at D= 0.2 h-1 (2.5 g/Lh) , where only 30% of the lactose was consumed from the substrate . Highest lactose consumption was found at D= 0.102 h-1 (53.4%), where productivity was nearly maximal (2.49g/Lh), but acid concentration (26.6%) was considerably higher than at the corresponding dilution rate D= 0.2 h-1, which was 14.75 g/L. El suero de leche es un gran contaminante de aguas debido a su alta demanda bioquímica de oxígeno (DBO), principalmente causada por la lactosa (azúcar de la leche); en este trabajo se estudia la posibilidad de convertir el lactosuero en un producto útil de gran valor agregado. Para este subproducto han sido desarrollados muchos métodos de aprovechamiento; entre los más importantes se encuentra su deshidratación, producción de refrescos y conversión de su azúcar a ácidos orgánicos. El ácido láctico es un valioso producto en la industria de alimentos y también es materia prima en la industria química, lo mismo que sus sales, como el lactato de sodio, calcio, hierro y antimonio principalmente. Con el objeto de determinar la mejor velocidad de dilución (D), para obtener la máxima producción de ácido láctico posible, se efectúan 8 fermentaciones desde D=0,102 h-1 hasta que la producción de ácido es cero (D=3,0 h-1). Se fijaron condiciones de trabajo de: 45± 0,1ºC, 5,6 ± 0,2 de pH y una concentración celular de 30 ± 4,0 g/l. Se utilizó Lactobacillus bulgaricus y como sustrato se preparó una solución de suero dulce de leche desproteinizado. La producción como ácido láctico y lactato de sodio, en solución, está entre 24,37 y 0,51g/l. La estabilidad en la producción se alcanza en promedio a los 2 tiempos de retención. La mayor productividad se encuentra en D= 0,2 h-1 (2,51g/lh), donde sólo se consume el 29,98% de la lactosa del alimento. El mayor consumo de lactosa se presenta en D=0,102h-1 (53,37%) donde la productividad es similar a la máxima (2,486 g/lh) pero la concentración de ácido (26,592 g/l) es mucho mayor que la correspondiente a la velocidad de dilución D=0,2 h-1 que es de 14,752 g/l. Universidad Nacional de Colombia - Sede Bogotá - Instituto de Biotecnología 1998-01-01 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Artículo revisado por pares application/pdf https://revistas.unal.edu.co/index.php/biotecnologia/article/view/29984 Revista Colombiana de Biotecnología; Vol. 1 No. 1 (1998); 45-50 Revista Colombiana de Biotecnología; Vol. 1 Núm. 1 (1998); 45-50 1909-8758 0123-3475 spa https://revistas.unal.edu.co/index.php/biotecnologia/article/view/29984/56751 Derechos de autor 1998 Revista Colombiana de Biotecnología https://creativecommons.org/licenses/by/4.0