Continuous lactic fermentation of deproteinized sweet whey

Whey is a major water contaminant due to its high biochemical oxygen demand (BOD), stemming mainly from its lactose (milk sugar) content. The objetive of this research was to investigate the conversion of whey into useful, value-added products. Several methods have been developed already, the most important being dehydration, production of drinks, and conversion of the sugar component into organic acids. Lactic acid including its sodium, calcium, iron and antimony salts, is a valuable product in the alimentary industry and is also a raw material in the chemical industry. To maximize lactic acid production we determined the optimal dilution rate (D) carrying out eight fermentations, with D = 0.102 h-1, until the acid production was nil (D= 3.0 h-1). Working conditions were 45 ± 0.1 °C, pH 5.6 ± 0.2, and a cell concentration of 30 ± 4.0 g/L, using Lactobacillus bulgaricus, and deproteinized sweet whey as a substrate. Production of lactic acid and sodium lactate was between 0.5 and 24.37 g/L. Stability of production was reached in average after two retention times. Highest productivity was at D= 0.2 h-1 (2.5 g/Lh) , where only 30% of the lactose was consumed from the substrate . Highest lactose consumption was found at D= 0.102 h-1 (53.4%), where productivity was nearly maximal (2.49g/Lh), but acid concentration (26.6%) was considerably higher than at the corresponding dilution rate D= 0.2 h-1, which was 14.75 g/L.

Saved in:
Bibliographic Details
Main Authors: Trujillo, M., Suarez, F., Gallego, D.
Format: Digital revista
Language:spa
Published: Universidad Nacional de Colombia - Sede Bogotá - Instituto de Biotecnología 1998
Online Access:https://revistas.unal.edu.co/index.php/biotecnologia/article/view/29984
Tags: Add Tag
No Tags, Be the first to tag this record!