Prediction of diesel engine performance, emissions and cylinder pressure obtained using Bioethanol-biodiesel-diesel fuel blends through an artificial neural network

The changes in the performance, emission and combustion characteristics of bioethanol-safflower biodiesel and diesel fuel blends used in a common rail diesel engine were investigated in this experimental study. E20B20D60 (20% bioethanol, 20% biodiesel, 60% diesel fuel by volume), E30B20D50, E50B20D30 and diesel fuel (D) were used as fuel. Engine power, torque, brake specific fuel consumption, NOx and cylinder inner pressure values were measured during the experiment. With the help of the obtained experimental data, an artificial neural network was created in MATLAB 2013a software by using back-propagation algorithm. Using the experimental data, predictions were made in the created artificial neural network. As a result of the study, the correlation coefficient was found as 0.98. In conclusion, it was seen that artificial neural networks approach could be used for predicting performance and emission values in internal combustion engines.

Saved in:
Bibliographic Details
Main Author: Aydogan,Hasan
Format: Digital revista
Language:English
Published: The Department of Chemical Engineering of the University of Cape Town 2015
Online Access:http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1021-447X2015000200008
Tags: Add Tag
No Tags, Be the first to tag this record!