LncRNA XIST promotes extracellular matrix synthesis, proliferation and migration by targeting miR-29b-3p/COL1A1 in human skin fibroblasts after thermal injury

Abstract Background: Long noncoding RNAs (lncRNAs) have been reported to be associated with dermis process during burn wound healing. This study aimed to investigate the role of lncRNA X-inactive specific transcript (XIST) in human skin fibroblasts (HSF) and extracellular matrix (ECM) as well as the regulatory network of XIST/microRNA-29b-3p (miR-29b-3p)/collagen 1 alpha 1 (COL1A1). Methods: The wound samples were collected from 25 patients with deep partial thickness burn at day 5 after burn. The thermal injured model was established using HSF cells. The expressions of XIST, miR-29b-3p and COL1A1 were measured by quantitative real-time polymerase chain reaction and western blot. ECM synthesis, cell proliferation and migration were detected by western blot, cell counting kit-8 and trans-well assays, respectively. The interaction between miR-29b-3p and XIST or COL1A1 was explored by bioinformatics analysis and luciferase reporter assay. Results: The expressions of XIST and COL1A1 were enhanced but miR-29b-3p expression was decreased after thermal injury. XIST overexpression promoted ECM synthesis, cell proliferation and migration in thermal injured HSF cells. However, XIST knockdown played an opposite effect. miR-29b-3p overexpression inhibited ECM synthesis, cell proliferation and migration, which was reversed by XIST. COL1A1 silence suppressed ECM synthesis, cell proliferation and migration by miR-29b-3p targeting. Moreover, COL1A1 up-regulation weakened the effect of XIST silence on ECM synthesis and HSF cell function. Conclusion: XIST promoted ECM synthesis, cell proliferation and migration by sponging miR-29b-3p and targeting COL1A1 in HSF cells after thermal injury, indicating the promoting role of XIST in wound healing.

Saved in:
Bibliographic Details
Main Authors: Cao,Wei, Feng,Youping
Format: Digital revista
Language:English
Published: Sociedad de Biología de Chile 2019
Online Access:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602019000100248
Tags: Add Tag
No Tags, Be the first to tag this record!