Deficit irrigation at different growth stages of the common bean (Phaseolus vulgaris L., cv. Imbabello)

To identify specific growth stages of the common bean crop at which the plant is less sensitive to water stress, in which irrigation could be omitted without significant decrease hi final yield, two field experiments were conducted at "La Tola" University Experimental Station, Tumbaco, Pichincha, Ecuador, on a sandy loam soil (Typic Haplustoll). The climate is tempered and dry (mean air temperature 16°C and mean relative humidity 74%, during the cropping season) 123 and 109 mm of rainfall were recorded during the experimental cropping periods (July to October), of 1992 and 1994, respectively. The treatments consisted of combinations of 7 irrigation regimes including normal watering; full stress; (traditional management practice); single stress at vegetative stage; flowering; seed formation and ripening, and of 2 levels of applied N (20 and 80 kg/ha). These 14 treatment combinations were arranged and analysed in a split-plot design with 4 replications. The plot size was 33.6 m² (8 rows, 7 m long) with a plant population of 120,000 pl/ha. Irrigation treatments were started after uniform germination and crop establishment Soil water content was monitored with a neutron probe down to 0.50 m depth, before and 24 h after each irrigation. The actual evapotranspiration of the crop was estimated by the water-balance technique. Field water efficiency and crop water use efficiency were calculated. Yield data showed that the treatments which had irrigation deficit had lower yield than those that had supplementary irrigation. The flowering stage was the most sensitive to water stress. Nitrogen fertilization significantly increased the number of pods and gram yield. Crop water use efficiency (kg/m³) was the lowest with stress at the flowering period, and the yield response factor (Ky) was higher hi treatments of full stress and stress at flowering. In relation to the traditional management practice adopted by farmers, only treatments of normal watering and stress at maturation had 13 and 10% higher crop water use efficiency, respectively.

Saved in:
Bibliographic Details
Main Authors: Calvache,M., Reichardt,K, Bacchi,O.O.S., Dourado-Neto,D.
Format: Digital revista
Language:English
Published: Escola Superior de Agricultura "Luiz de Queiroz" 1997
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90161997000300002
Tags: Add Tag
No Tags, Be the first to tag this record!