Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation

Rationale The regenerative potential of the heart is insufficient to fully restore functioning myocardium after injury, motivating the quest for a cell-based replacement strategy. Bone marrow-derived mesenchymal stem cells (MSCs) have the capacity for cardiac repair that appears to exceed their capacity for differentiation into cardiac myocytes. Objective Here, we test the hypothesis that bone marrow derived MSCs stimulate the proliferation and differentiation of endogenous cardiac stem cells (CSCs) as part of their regenerative repertoire. Methods And Results Female Yorkshire pigs (n=31) underwent experimental myocardial infarction (MI), and 3 days later, received transendocardial injections of allogeneic male bone marrow-derived MSCs, MSC concentrated conditioned medium (CCM), or placebo (Plasmalyte). A no-injection control group was also studied. MSCs engrafted and differentiated into cardiomyocytes and vascular structures. In addition, endogenous c-kit + CSCs increased 20-fold in MSC-treated animals versus controls (P<0.001), there was a 6-fold increase in GATA-4+ CSCs in MSC versus control (P<0.001), and mitotic myocytes increased 4-fold (P=0.005). Porcine endomyocardial biopsies were harvested and plated as organotypic cultures in the presence or absence of MSC feeder layers. In vitro, MSCs stimulated c-kit+ CSCs proliferation into enriched populations of adult cardioblasts that expressed Nkx2-5 and troponin I. Conclusions MSCs stimulate host CSCs, a new mechanism of action underlying successful cell-based therapeutics. © 2010 American Heart Association, Inc.

Saved in:
Bibliographic Details
Main Authors: Hatzistergos, K. E., Quevedo, H., Oskouei, B. N., Hu, Q., Feigenbaum, G. S., Margitich, I. S., Mazhari, R., Boyle, A. J., Zambrano, J. P., Rodriguez, J. E., Dulce, R., Pattany, P. M., Valdes, D., Revilla, C., Heldman, A. W., McNiece, I., Hare, J. M.
Format: journal article biblioteca
Language:eng
Published: 2010
Online Access:http://hdl.handle.net/20.500.12792/2050
Tags: Add Tag
No Tags, Be the first to tag this record!