Sinking CO2 in Supercritical Reservoirs

Geologic carbon storage is required for achieving negative CO2 emissions to deal with the climate crisis. The classical concept of CO2 storage consists in injecting CO2 in geological formations at depths greater than 800 m, where CO2 becomes a dense fluid, minimizing storage volume. Yet CO2 has a density lower than the resident brine and tends to float, challenging the widespread deployment of geologic carbon storage. Here, we propose for the first time to store CO2 in supercritical reservoirs to reduce the buoyancy‐driven leakage risk. Supercritical reservoirs are found at drilling‐reachable depth in volcanic areas, where high pressure (p > 21.8 MPa) and temperature (T > 374°C) imply CO2 is denser than water. We estimate that a CO2 storage capacity in the range of 50–500 Mt yr−1 could be achieved for every 100 injection wells. Carbon storage in supercritical reservoirs is an appealing alternative to the traditional approach.

Saved in:
Bibliographic Details
Main Authors: Parisio, Francesco, Vilarrasa, Víctor
Other Authors: European Research Council
Format: artículo biblioteca
Language:English
Published: Wiley-Blackwell 2020-11-16
Subjects:Geologic carbon storage, Supercritical geothermal systems, Buoyancy, CO2 leakage, CO2 emissions reduction,
Online Access:http://hdl.handle.net/10261/224287
http://dx.doi.org/10.13039/501100000781
http://dx.doi.org/10.13039/501100004837
Tags: Add Tag
No Tags, Be the first to tag this record!