Characterization of a γ-tocopherol methyltransferase mutant gene in wild (Carthamus oxyacanthus M. Bieb.) and cultivated safflower (C. tinctorius L.)

Safflower (Carthamus tinctorius L.) seeds contain a high proportion of tocopherols (>90 %) in the α-tocopherol form. A mutant with a high concentration of γ-tocopherol (>85 %) was identified in germplasm of wild safflower (Carthamus oxyacanthus M. Bieb.) that showed strong introgression of C. tinctorius, which allowed selection of individuals of both species with high concentrations of either α- or γ-tocopherol. The trait is controlled by a γ-tocopherol methyltransferase (γ-TMT) locus. The objective of this research was to identify γ-TMT sequence mutations associated with the high γ-tocopherol trait. Full length genomic and cDNA sequences of the γ-TMT gene were obtained from plants of C. tinctorius and C. oxyacanthus with both tocopherol profiles. Sequences from high γ-tocopherol plants showed an 11 bp deletion in exon 6 of the γ-TMT gene that disrupted the reading frame and created a premature stop codon, resulting in a predicted protein with a drastically altered amino acid sequence downstream the frameshift site. The data suggested that the frameshift mutation was underlying the γ-TMT loss of function mutant allele that determines the high γ-tocopherol phenotype. The characterized sequence change of 11 bp deletion could be used directly as a functional marker for introgression of the high γ-tocopherol trait into elite safflower cultivars.

Saved in:
Bibliographic Details
Main Authors: García-Moreno, María J., Fernández Martínez, José María, Velasco Varo, Leonardo, Pérez-Vich, Begoña
Other Authors: Ministerio de Ciencia e Innovación (España)
Format: artículo biblioteca
Published: Kluwer Academic Publishers 2014-06-03
Subjects:Carthamus tinctorius, Wild safflower, Safflower, Frameshift mutation γ-tocopherol methyltransferase, Carthamus oxyacanthus,
Online Access:http://hdl.handle.net/10261/127232
http://dx.doi.org/10.13039/501100004837
http://dx.doi.org/10.13039/501100000780
Tags: Add Tag
No Tags, Be the first to tag this record!