Comparison of different genetic distances to test isolation by distance between populations

Studying isolation by distance can provide useful demographic information. To analyze isolation by distance from molecular data, one can use some kind of genetic distance or coalescent simulations. Molecular markers can often display technical caveats, such as PCR-based amplification failures (null alleles, allelic dropouts). These problems can alter population parameter inferences that can be extracted from molecular data. In this simulation study, we analyze the behavior of different genetic distances in Island (null hypothesis) and stepping stone models displaying varying neighborhood sizes. Impact of null alleles of increasing frequency is also studied. In stepping stone models without null alleles, the best statistic to detect isolation by distance in most situations is the chord distance DCSE. Nevertheless, for markers with genetic diversities HS<0.4–0.5, all statistics tend to display the same statistical power. Marginal sub-populations behave as smaller neighborhoods. Metapopulations composed of small sub-population numbers thus display smaller neighborhood sizes. When null alleles are introduced, the power of detection of isolation by distance is significantly reduced and DCSE remains the most powerful genetic distance. We also show that the proportion of null allelic states interact with the slope of the regression of FST/(1−FST) as a function of geographic distance. This can have important consequences on inferences that can be made from such data. Nevertheless, Chapuis and Estoup's FreeNA correction for null alleles provides very good results in most situations. We finally use our conclusions for reanalyzing and reinterpreting some published data sets.

Saved in:
Bibliographic Details
Main Authors: Sere, Modou, Thevenon, Sophie, Belem, Adrien Marie Gaston, De Meeus, Thierry
Format: article biblioteca
Language:eng
Subjects:L72 - Organismes nuisibles des animaux, L73 - Maladies des animaux, U10 - Informatique, mathématiques et statistiques, génétique des populations, distance génétique, vecteur de maladie, marqueur génétique, distribution géographique, isolement, étude de cas, modèle mathématique, modèle de simulation, Ixodes ricinus, Cervus, Glossina tachinoides, Glossina palpalis, Leishmania, contrôle de maladies, http://aims.fao.org/aos/agrovoc/c_34326, http://aims.fao.org/aos/agrovoc/c_27530, http://aims.fao.org/aos/agrovoc/c_8164, http://aims.fao.org/aos/agrovoc/c_24030, http://aims.fao.org/aos/agrovoc/c_5083, http://aims.fao.org/aos/agrovoc/c_37744, http://aims.fao.org/aos/agrovoc/c_24392, http://aims.fao.org/aos/agrovoc/c_24199, http://aims.fao.org/aos/agrovoc/c_24242, http://aims.fao.org/aos/agrovoc/c_30962, http://aims.fao.org/aos/agrovoc/c_34162, http://aims.fao.org/aos/agrovoc/c_30559, http://aims.fao.org/aos/agrovoc/c_30558, http://aims.fao.org/aos/agrovoc/c_24350, http://aims.fao.org/aos/agrovoc/c_2327, http://aims.fao.org/aos/agrovoc/c_3093, http://aims.fao.org/aos/agrovoc/c_1229, http://aims.fao.org/aos/agrovoc/c_5155, http://aims.fao.org/aos/agrovoc/c_2724, http://aims.fao.org/aos/agrovoc/c_8081, http://aims.fao.org/aos/agrovoc/c_8500, http://aims.fao.org/aos/agrovoc/c_3081,
Online Access:http://agritrop.cirad.fr/584451/
http://agritrop.cirad.fr/584451/7/hdy201726a.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!