Effect of 1BL/1RS translocation on gluten protein fraction quantities and dough rheological properties

Understanding the effect of gluten protein fractions on major dough rheological quality traits among 1BL/1RS and non-1BL/1RS lines will facilitate quality improvement in wheat. Fourteen advanced facultative wheat lines derived from leading cultivars Shiluan 02-1 without 1BL/1RS and Zhoumai 16 with 1BL/1RS were grown in Anyang and Jiaozuo in Henan province in the 2012–2013 growing season. The gluten protein fractions were quantified with reversed-phase ultra-performance liquid chromatography (RP-UPLC) and size-exclusion ultra-performance liquid chromatography (SE-UPLC), and their correlations with dough rheological properties were determined. The results showed that Extensograph extensibility and maximum resistance, content of unextractable glutenin polymeric protein, quantity of gluten protein fractions and their ratios received significant influence from the presence of 1BL/1RS translocation and the line within group, whereas Extensograph extension area, content of glutenin and the ratio of gliadin-to-glutenin were predominantly affected by the line within group. Significant correlations were observed between gluten protein fraction quantities and dough rheological parameters in the 1BL/1RS and non-1BL/1RS lines. The 1BL/1RS lines with good dough rheological quality exhibited high content of unextractable glutenin polymeric proteins, 1BL/1RS lines with good dough rheological quality exhibited high content of unextractable glutenin polymeric proteins, which was significantly and positively correlated with Extensograph extension area (r = 0.92, P < 0.001), extensibility (r = 0.92, P < 0.001) and maximum resistance (r = 0.80, P < 0.01). The non-1BL/1RS lines with good dough rheological quality showed low ratio of gliadin-to-glutenin, which was significantly and negatively correlated with Extensograph extension area (r = 0.91, P < 0.001) and maximum resistance (r = 0.88, P < 0.001). These results may guide genotypic selection in early generatUnderstanding the effect of gluten protein fractions on major dough rheological quality traits among 1BL/1RS and non-1BL/1RS lines will facilitate quality improvement in wheat. Fourteen advanced facultative wheat lines derived from leading cultivars Shiluan 02-1 without 1BL/1RS and Zhoumai 16 with 1BL/1RS were grown in Anyang and Jiaozuo in Henan province in the 2012–2013 growing season. The gluten protein fractions were quantified with reversed-phase ultra-performance liquid chromatography (RP-UPLC) and size-exclusion ultra-performance liquid chromatography (SE-UPLC), and their correlations with dough rheological properties were determined. The results showed that Extensograph extensibility and maximum resistance, content of unextractable glutenin polymeric protein, quantity of gluten protein fractions and their ratios received significant influence from the presence of 1BL/1RS translocation and the line within group, whereas Extensograph extension area, content of glutenin and the ratio of gliadin-to-glutenin were predominantly affected by the line within group. Significant correlations were observed between gluten protein fraction quantities and dough rheological parameters in the 1BL/1RS and non-1BL/1RS lines. The 1BL/1RS lines with good dough rheological quality exhibited high content of unextractable glutenin polymeric proteins, 1BL/1RS lines with good dough rheological quality exhibited high content of unextractable glutenin polymeric proteins, which was significantly and positively correlated with Extensograph extension area (r = 0.92, P < 0.001), extensibility (r = 0.92, P < 0.001) and maximum resistance (r = 0.80, P < 0.01). The non-1BL/1RS lines with good dough rheological quality showed low ratio of gliadin-to-glutenin, which was significantly and negatively correlated with Extensograph extension area (r = 0.91, P < 0.001) and maximum resistance (r = 0.88, P < 0.001). These results may guide genotypic selection in early generations to improve the dough rheological properties when 1BL/1RS is used in breeding program.ions to improve the dough rheological properties when 1BL/1RS is used in breeding program.

Saved in:
Bibliographic Details
Main Authors: Dehui Zhao, Yan Jun, Huang Yu-Lian, Xianchun Xia, Yan Zhang, Yubing Tian, He Zhonghu, Yong Zhang
Format: Article biblioteca
Language:Chinese
Published: Science Press 2015
Subjects:AGRICULTURAL SCIENCES AND BIOTECHNOLOGY, 1BL/1RS Translocation, Gluten Protein Fractions, WHEAT, CHROMOSOME TRANSLOCATION, DOUGHS, RHEOLOGICAL PROPERTIES, GLUTEN, PROTEINS,
Online Access:https://hdl.handle.net/10883/21458
Tags: Add Tag
No Tags, Be the first to tag this record!