Obtaining a fungal inoculum for degradation of an azo dye by solid state fermentation

The textile and food industry generate effluents with large amounts of azo dyes, leading to a general detriment of the ecosystem due to the decrease of the photosynthetic process and the available oxygen to aquatic biota. The dyes adsorption over an agro-industrial waste, followed by a degradation process under Solid State Fermentation (SSF) conditions with white-rot fungi is highlighted for the treatment of those pollutants. The aim of this research was to evaluate the fungal inoculum obtained from different culture media and its effect on the degradation percentage of the red dye 40 under SSF conditions. Liquid malt extract medium and PDA solid medium and wheat bran were the different culture media evaluated. The assays were performed using the fungal species Pleurotus ostreatus and Trametes versicolor; the degradation process was monitored for 20 days and then the degradation percentage was determined. The best dye degradation percentage was 93.19% by T. versicolor and 63.15% by P. ostreatus, percentages reached with the obtained fungal inoculum from wheat bran medium and supplemented with malt extract. The variation in the conditions of inoculum growth had a significant incidence on the efficiency of the biodegradation process.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Jaramillo, Ana, Jiménez, Sara, Merino, Andrés, Hormaza, Angelina
Format: Digital revista
Langue:spa
Publié: Universidad de Ciencias Aplicadas y Ambientales U.D.C.A 2014
Accès en ligne:https://revistas.udca.edu.co/index.php/ruadc/article/view/425
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
id rev-ruadc-co-article-425
record_format ojs
institution UDCA CO
collection OJS
country Colombia
countrycode CO
component Revista
access En linea
databasecode rev-ruadc-co
tag revista
region America del Sur
libraryname Biblioteca de la UDCA de Colombia
language spa
format Digital
author Jaramillo, Ana
Jiménez, Sara
Merino, Andrés
Hormaza, Angelina
spellingShingle Jaramillo, Ana
Jiménez, Sara
Merino, Andrés
Hormaza, Angelina
Obtaining a fungal inoculum for degradation of an azo dye by solid state fermentation
author_facet Jaramillo, Ana
Jiménez, Sara
Merino, Andrés
Hormaza, Angelina
author_sort Jaramillo, Ana
title Obtaining a fungal inoculum for degradation of an azo dye by solid state fermentation
title_short Obtaining a fungal inoculum for degradation of an azo dye by solid state fermentation
title_full Obtaining a fungal inoculum for degradation of an azo dye by solid state fermentation
title_fullStr Obtaining a fungal inoculum for degradation of an azo dye by solid state fermentation
title_full_unstemmed Obtaining a fungal inoculum for degradation of an azo dye by solid state fermentation
title_sort obtaining a fungal inoculum for degradation of an azo dye by solid state fermentation
description The textile and food industry generate effluents with large amounts of azo dyes, leading to a general detriment of the ecosystem due to the decrease of the photosynthetic process and the available oxygen to aquatic biota. The dyes adsorption over an agro-industrial waste, followed by a degradation process under Solid State Fermentation (SSF) conditions with white-rot fungi is highlighted for the treatment of those pollutants. The aim of this research was to evaluate the fungal inoculum obtained from different culture media and its effect on the degradation percentage of the red dye 40 under SSF conditions. Liquid malt extract medium and PDA solid medium and wheat bran were the different culture media evaluated. The assays were performed using the fungal species Pleurotus ostreatus and Trametes versicolor; the degradation process was monitored for 20 days and then the degradation percentage was determined. The best dye degradation percentage was 93.19% by T. versicolor and 63.15% by P. ostreatus, percentages reached with the obtained fungal inoculum from wheat bran medium and supplemented with malt extract. The variation in the conditions of inoculum growth had a significant incidence on the efficiency of the biodegradation process.
publisher Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
publishDate 2014
url https://revistas.udca.edu.co/index.php/ruadc/article/view/425
work_keys_str_mv AT jaramilloana obtainingafungalinoculumfordegradationofanazodyebysolidstatefermentation
AT jimenezsara obtainingafungalinoculumfordegradationofanazodyebysolidstatefermentation
AT merinoandres obtainingafungalinoculumfordegradationofanazodyebysolidstatefermentation
AT hormazaangelina obtainingafungalinoculumfordegradationofanazodyebysolidstatefermentation
AT jaramilloana obtenciondeuninoculofungicoparaladegradaciondeuncoloranteazoporfermentacionenestadosolido
AT jimenezsara obtenciondeuninoculofungicoparaladegradaciondeuncoloranteazoporfermentacionenestadosolido
AT merinoandres obtenciondeuninoculofungicoparaladegradaciondeuncoloranteazoporfermentacionenestadosolido
AT hormazaangelina obtenciondeuninoculofungicoparaladegradaciondeuncoloranteazoporfermentacionenestadosolido
_version_ 1763178440395063296
spelling rev-ruadc-co-article-4252021-07-13T07:53:15Z Obtaining a fungal inoculum for degradation of an azo dye by solid state fermentation Obtención de un inóculo fúngico para la degradación de un colorante azo por fermentación en estado sólido Jaramillo, Ana Jiménez, Sara Merino, Andrés Hormaza, Angelina Fermentación en estado sólido Hongos de podredumbre blanca Inóculo Rojo 40 Tuza de maíz Olid state fermentation White rot fungi Inoculum Red 40 Corn cob The textile and food industry generate effluents with large amounts of azo dyes, leading to a general detriment of the ecosystem due to the decrease of the photosynthetic process and the available oxygen to aquatic biota. The dyes adsorption over an agro-industrial waste, followed by a degradation process under Solid State Fermentation (SSF) conditions with white-rot fungi is highlighted for the treatment of those pollutants. The aim of this research was to evaluate the fungal inoculum obtained from different culture media and its effect on the degradation percentage of the red dye 40 under SSF conditions. Liquid malt extract medium and PDA solid medium and wheat bran were the different culture media evaluated. The assays were performed using the fungal species Pleurotus ostreatus and Trametes versicolor; the degradation process was monitored for 20 days and then the degradation percentage was determined. The best dye degradation percentage was 93.19% by T. versicolor and 63.15% by P. ostreatus, percentages reached with the obtained fungal inoculum from wheat bran medium and supplemented with malt extract. The variation in the conditions of inoculum growth had a significant incidence on the efficiency of the biodegradation process. La industria textil y alimentaria genera efluentes con grandes cantidades de colorantes tipo azo, ocasionando un deterioro general del ecosistema, debido a la disminución de los procesos fotosintéticos y del oxígeno disponible para la biota acuática. Para el tratamiento de dichos contaminantes, se destaca la adsorción de colorantes sobre un residuo agroindustrial, seguida de un proceso de degradación, bajo condiciones de Fermentación Estado Sólido (FES), con hongos de podredumbre blanca. El objetivo de esta investigación fue evaluar el inoculo fúngico obtenido de diferentes medios de cultivo y su efecto en el porcentaje degradación del colorante rojo 40, bajo condiciones de FES. Los diferentes medios de cultivo evaluados fueron un medio líquido de extracto de malta y los medios sólidos PDA (Potato Dextrose Agar) y salvado de trigo. Los ensayos fueron realizados utilizando las especies fúngicas Pleurotus ostreatus y Trametes versicolor; el proceso de degradación fue monitoreado durante 20 días y, posteriormente, fue determinado el porcentaje de degradación. Los mejores resultados de degradación fueron 93,19%, para T. versicolor y, de 63,15%, para P. ostreatus, los cuales, se alcanzaron con el inóculo fúngico obtenido del medio salvado de trigo y suplementado con extracto de malta. La variación en las condiciones de crecimiento del inóculo incidió, de forma significativa, en el porcentaje de degradación del colorante rojo 40. Universidad de Ciencias Aplicadas y Ambientales U.D.C.A 2014-12-31 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf text/html https://revistas.udca.edu.co/index.php/ruadc/article/view/425 10.31910/rudca.v17.n2.2014.425 Revista U.D.C.A Actualidad & Divulgación Científica; Vol. 17 No. 2 (2014): Revista U.D.C.A Actualidad & Divulgación Científica. Julio-Diciembre; 577-585 Revista U.D.C.A Actualidad & Divulgación Científica; Vol. 17 Núm. 2 (2014): Revista U.D.C.A Actualidad & Divulgación Científica. Julio-Diciembre; 577-585 Revista U.D.C.A Actualidad & Divulgación Científica; v. 17 n. 2 (2014): Revista U.D.C.A Actualidad & Divulgación Científica. Julio-Diciembre; 577-585 2619-2551 0123-4226 10.31910/rudca.v17.n2.2014 spa https://revistas.udca.edu.co/index.php/ruadc/article/view/425/365 https://revistas.udca.edu.co/index.php/ruadc/article/view/425/1234 /*ref*/ANONYMOUS. 1984. Allura Red-Developmental and psychotoxic effects. Food Chem. Toxicol. 22:913-928. /*ref*/BANAT, I.M.; NIGAM, P.; SINGH, D.; MARCHANT, R. 1996. Microbial decolorization of textile-dyecontaining effluents : A review. Bioresour. Technol. 58:217-227. /*ref*/BHAGNAGAR, T.; RODRIGUEZ, J.A.; MATEOS, J.C.; NUNGARAY, J.; GONZA, V.; ROUSSOS, S.; CORDOVA, J. 2006. Improving lipase production by nutrient source modification using Rhizopus homothallicus cultured in solid state fermentation. Process. Biochem. 41:2264-2269. /*ref*/BOER, C.G.; OBICI, L.; DE SOUZA, C.G.M.; PERALTA, R.M. 2004. Decolorization of synthetic dyes by solid state cultures of Lentinula (Lentinus) edodes producing manganese peroxidase as the main ligninolytic enzyme. Bioresour. Technol. 94(2):107-12. /*ref*/BORCHERT, M.; LIBRA, J.A. 2001. Decolorization of reactive dyes by the white rot fungus Trametes versicolor in sequencing batch reactors. Biotechnol. Bioeng. 75(3):313-21. /*ref*/DHILLON, G.S.; KAUR, S.; BRAR, S.K. 2012. In-vitro decolorization of recalcitrant dyes through an ecofriendly approach using laccase from Trametes versicolor grown on brewer's spent grain. Int. Biodeterior. Biodegrad. 72 (1): 67-75. /*ref*/ERKURT, E.A.; ÜNYAYAR, A.; KUMBUR, H. 2007. Decolorization of synthetic dyes by white rot fungi, involving laccase enzyme in the process. Process Biochem. 42(10):1429-1435. /*ref*/FORGACS, E.; CSERHÁTI, T.; OROS, G. 2004. Removal of synthetic dyes from wastewaters: a review. Environment. Int. 30(7):953-971. /*ref*/GRANDE, D.; OROZCO, S. 2013. Producción y procesamiento del maíz en Colombia. Revista Científica Guillermo de Ockham. 11(1):97-110. /*ref*/HA, H.C.; HONDA, Y.; WATANABE, T.; KUWAHARA, M. 2001. Production of manganese peroxidase by pellet culture of the lignin-degrading basidiomycete, Pleurotus ostreatus. Appl. Microbiol. Biotechnol. 55(6):704-711. /*ref*/JAIN, A.; MORLOK, C.K.; HENSON, J.M. 2013. Comparison of solid-state and submerged-state fermentation for the bioprocessing of switchgrass to ethanol and acetate by Clostridium phytofermentans. Appl. Microbiol. Biotechnol. 97(2):905-917. /*ref*/KOYANI, R.D.; SANGHVI, G.V.; SHARMA, R.K.; RAJPUT, K.S. 2013. Contribution of lignin degrading enzymes in decolourisation and degradation of reactive textile dyes. Int Biodeter Biodegr. 77:1-9. /*ref*/KRISHNA, C. 2005. Solid-state fermentation systems-an overview. Crit. Rev. Biotechnol. 25(1-2):1-30. /*ref*/KUMAR, D.; JAIN, V.K.; SHANKER, G.; SRIVASTAVA, A. 2003. Utilisation of fruits waste for citric acid production by solid state fermentation. Process Biochem. 38(12):1725-1729. /*ref*/KUMAR, K.; DASTIDAR, M.G.; SREEKRISHNAN, T.R. 2009. Effect of Process Parameters on Aerobic Decolourization of Reactive Azo Dye using Mixed Culture. Eng. Technol. 34:962-965. /*ref*/LEVIN, L.; PAPINUTTI, L.; FORCHIASSIN, F. 2004. Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes. Bioresour. Technol. 94(2):169-176. /*ref*/LEVIN, L.; MELIGNANI, E.; RAMOS, A.M. 2010. Effect of nitrogen sources and vitamins on ligninolytic enzyme production by some white-rot fungi. Dye decolorization by selected culture filtrates. Bioresour. Technol. 101(12):4554-4563. /*ref*/MEMBRILLO, I.; SÁNCHEZ, C.; MENESES, M.; FAVELA, E.; LOERA, O. 2008. Effect of substrate particle size and additional nitrogen source on production of lignocellulolytic enzymes by Pleurotus ostreatus strains. Bioresour. Technol. 99(16):7842-7847. /*ref*/MOAWAD, H.; EL-RAHIM, W.M.A.; KHALAFALLAH, M. 2003. Evaluation of biotoxicity of textile dyes using two bioassays. J. Basic Microbiol. 43(3):218-229. /*ref*/MORENO, A.; FIGUEROA, D.; HORMAZA, A. 2012. Diseño estadístico para la remoción eficiente del colorante rojo 40 sobre tusa de maíz. Producción más Limpia. 7(2):9-19. /*ref*/NEILL, C.O.; HAWKES, F.R.; HAWKES, D.L.; LOURENC, N.D. 1999. Review Colour in textile effluents sources, measurement, discharge consents and simulation: a review. J. Chem. Technol. Biotechnol. 74:1009-1018. /*ref*/NIGAM, P.; ARMOUR, G.; BANAT, I.M.; SINGH, D.; MARCHANT, R. 2000. Physical removal of textile dyes from effluents and solid-state fermentation of dye-adsorbed agricultural residues. Bioresour. Technol. 72:219-226. /*ref*/NORSALWANI, T.; LAH, T.; NORULAINI, N.; AB, N.; HASNAN, N.J.; BEN, M.M. 2012. Cellulase activity in solid state fermentation of palm kernel cake with. Malays J. Microbiol. 8(4):235-241. /*ref*/PANDEY, A. 2001. Solid State Fermentation in Biotechnology: Fundamentals and Applications. Neuropsychological rehabilitation. Asiatech Publishers Inc (New Delhi). 82:73-77. /*ref*/PANDEY, A. 2003. Solid-state fermentation. Biochem. Eng. J. 13:81-84. /*ref*/PEARCE, C. 2003. The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes and Pigments. 58(3):179-196. /*ref*/PRABHAKAR, A.; KRISHNAIAH, K.; JANAUN, J.; BONO, A. 2005. An overview of engineering aspects of solid state fermentation. Malays J. Microbiol. 1(2):10-16. /*ref*/RAMAKRISHNA, K.; VIRARAGHAVAN, T. 1997. Dye removal using low cost adsorbents. Water Sci. Technol. 36(2-3):189-196. /*ref*/RANI, R.; KUMAR, A.; SOCCOL, C.R.; PANDEY, A. 2009. Recent advances in solid-state fermentation. Biochem. Eng. J. 44:13-18. /*ref*/ROBINSON, T.; CHANDRAN, B.; NIGAM, P. 2001a. Studies on the production of enzymes by white-rot fungi for the decolourisation of textile dyes. Enzyme Microb. Technol. 29:575-579. /*ref*/ROBINSON, T.; CHANDRAN, B.; NIGAM, P. 2002. Removal of dyes from an artificial textile dye effluent by two agricultural waste residues, corncob and barley husk. Environm.Int. 28(1-2):29-33. /*ref*/ROBINSON, T.; SINGH, D.; NIGAM, P. 2001b. Solid-state fermentation: a promising microbial technology for secondary metabolite production. Appl. Microbiol. Biotechnol. 55(3):284-289. /*ref*/ROBINSON, T.; NIGAM, P.S. 2008. Remediation of Textile Dye Waste Water Using a White-Rot Fungus Bjerkandera adusta Through Solid-state Fermentation (SSF). Appl. Biochem. Biotechnol. 151:618-628. /*ref*/SELVAM, K.; SWAMINATHAN, K.; CHAE, K.S. 2003. Decolourization of azo dyes and a dye industry effluent by a white rot fungus Thelephora sp. Bioresour. Technol. 88(2):115-119. /*ref*/SHIMADA, C.; KANO, K.; SASAKI, Y.F.; SATO, I.; TSUDA, S. 2010. Differential colon DNA damage induced by azo food additives between rats and mice. J. Toxicol. Sci. 35(4):547-554. /*ref*/SOYLAK, M.; UNSAL, Y.E.; TUZEN, M. 2011. Spectrophotometric determination of trace levels of allura red in water samples after separation and preconcentration. Food Chem. Toxicol. 49(5):1183-1187. /*ref*/STAJIÍ, M.; PERSKY, L.; FRIESEM, D.; HADAR, Y.; WASSER, S.P.; NEVO, E.; VUKOJEVIÄ�, J. 2006. Effect of different carbon and nitrogen sources on laccase and peroxidases production by selected Pleurotus species. Enzyme Microb. Technol. 38(1-2):65-73. /*ref*/SWAMY, J.; RAMSAY, J.A. 1999. Effects of glucose and NH4 concentrations on sequential dye decoloration by Trametes versicolor. Enzyme Microb. Technol. 25:278-284. /*ref*/VORHEES, C.V. 1983. Developmental toxycity and psychotoxicity of FD and C Red dye No. 40 (Allura Red AC) in rats. Toxicol. 28(40):207-217. /*ref*/WALSH, G.E.; BAHNER, L.H.; HORNING, W.B. 1980. Toxicity of textile mill effluents to freshwater and estuarine algae, crustaceans and fishes. Environ. Pollut. 21(388):169-179. /*ref*/WESENBERG, D. 2003. White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv. 22(1-2):161-187. /*ref*/ZENG, X.; CAI, Y.; LIAO, X.; ZENG, X.; LI, W.; ZHANG, D. 2011. Decolorization of synthetic dyes by crude laccase from a newly isolated Trametes trogii strain cultivated on solid agro-industrial residue. J. Hazard. Mater. 187(1-3):517-525. /*ref*/ZHUO, R.; MA, L.; FAN, F.; GONG, Y.; WAN, X.; JIANG, M.; ZHANG, X.; YANG, Y. 2011. Decolorization of different dyes by a newly isolated white-rot fungi strain Ganoderma sp.En3 and cloning and functional analysis of its laccase gene. J. Hazard. Mater. 192(2):855-73. /*ref*/ZOLLINGER, H. 2004. Color Chemistry. Synthesis, Properties and Applications of Organic Dyes and Pigments. 3rd revised edition. Angewandte Chemie. 43(40):5291-5291.