LAMP technology: Rapid identification of Brucella and Mycobacterium avium subsp. paratuberculosis

In this study, we developed new sets of primers to detect Brucella spp. and M. avium subsp. paratuberculosis (MAP) through isothermal amplification. We selected a previously well-characterized target gene, bscp31, specific for Brucella spp. and IS900 for MAP. The limits of detection using the loop-mediated isothermal amplification (LAMP) protocols described herein were similar to those of conventional PCR targeting the same sequences. Hydroxynaphtol blue and SYBR GreenTM allowed direct naked-eye detection with identical sensitivity as agarose gel electrophoresis. We included the LAMP-based protocol in a rapid identification scheme of the respective pathogens, and all tested isolates were correctly identified within 2 to 3 h. In addition, both protocols were suitable for specifically identifying the respective pathogens; in the case of Brucella, it also allowed the identification of all the biovars tested. We conclude that LAMP is a suitable rapid molecular typing tool that could help to shorten the time required to identify insidious bacteria in low-complexity laboratories, mainly in developing countries.

Na minha lista:
Detalhes bibliográficos
Principais autores: Trangoni,Marcos D., Gioffré,Andrea K., Cerón Cucchi,María E., Caimi,Karina C., Ruybal,Paula, Zumárraga,Martín J., Cravero,Silvio L.
Formato: Digital revista
Idioma:English
Publicado em: Sociedade Brasileira de Microbiologia 2015
Acesso em linha:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822015000200619
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Descrição
Resumo:In this study, we developed new sets of primers to detect Brucella spp. and M. avium subsp. paratuberculosis (MAP) through isothermal amplification. We selected a previously well-characterized target gene, bscp31, specific for Brucella spp. and IS900 for MAP. The limits of detection using the loop-mediated isothermal amplification (LAMP) protocols described herein were similar to those of conventional PCR targeting the same sequences. Hydroxynaphtol blue and SYBR GreenTM allowed direct naked-eye detection with identical sensitivity as agarose gel electrophoresis. We included the LAMP-based protocol in a rapid identification scheme of the respective pathogens, and all tested isolates were correctly identified within 2 to 3 h. In addition, both protocols were suitable for specifically identifying the respective pathogens; in the case of Brucella, it also allowed the identification of all the biovars tested. We conclude that LAMP is a suitable rapid molecular typing tool that could help to shorten the time required to identify insidious bacteria in low-complexity laboratories, mainly in developing countries.