Dynamics of the ruminal microbial ecosystem, and inhibition of methanogenesis and propiogenesis in response to nitrate feeding to Holstein calves

It is known that nitrate inhibits ruminal methanogenesis, mainly through competition with hydrogenotrophic methanogens for available hydrogen (H2) and also through toxic effects on the methanogens. However, there is limited knowledge about its effects on the others members of ruminal microbiota and their metabolites. In this study, we investigated the effects of dietary nitrate inclusion on enteric methane (CH4) emission, temporal changes in ruminal microbiota, and fermentation in Holstein calves. Eighteen animals were maintained in individual pens for 45 d. Animals were randomly allocated to either a control (CTR) or nitrate (NIT, containing 15 g of calcium nitrate/kg dry matter) diets. Methane emissions were estimated using the sulfur hexafluoride (SF6) tracer method. Ruminal microbiota changes and ruminal fermentation were evaluated at 0, 4, and 8 h post-feeding. In this study, feed dry matter intake (DMI) did not differ between dietary treatments (P > 0.05). Diets containing NIT reduced CH4 emissions by 27% (g/d) and yield by 21% (g/kg DMI) compared to the CTR (P < 0.05). The pH values and total volatile fatty acids (VFA) concentration did not differ between dietary treatments (P > 0.05) but differed with time, and post-feeding (P < 0.05). Increases in the concentrations of ruminal ammonia nitrogen (NH3–N) and acetate were observed, whereas propionate decreased at 4 h post-feeding with the NIT diet (P < 0.05). Feeding the NIT diet reduced the populations of total bacteria, total methanogens, Ruminococcus albus and Ruminococcus flavefaciens, and the abundance of Succiniclasticum, Coprococcus, Treponema, Shuttlewortia, Succinivibrio, Sharpea, Pseudobutyrivibrio, and Selenomona (P < 0.05); whereas, the population of total fungi, protozoa, Fibrobacter succinogenes, Atopobium and Erysipelotrichaceae L7A_E11 increased (P < 0.05). In conclusion, feeding nitrate reduces enteric CH4 emissions and the methanogens population, whereas it decreases the propionate concentration and the abundance of bacteria involved in the succinate and acrylate pathways. Despite the altered fermentation profile and ruminal microbiota, DMI was not influenced by dietary nitrate. These findings suggest that nitrate has a predominantly direct effect on the reduction of methanogenesis and propionate synthesis.

Guardado en:
Detalles Bibliográficos
Autores principales: Ortiz Chura, Abimael, Gere, José, Marcoppido, Gisela Ariana, Depetris, Gustavo, Cravero, Silvio Lorenzo Pedro, Faverin, Claudia, Pinares-Patiño, Cesar, Cataldi, Angel Adrian, Ceron Cucchi, Maria Esperanza
Formato: info:ar-repo/semantics/artículo biblioteca
Idioma:eng
Publicado: Elsevier 2021-12
Materias:Emisiones de Metano, Ternero, Digestión Ruminal, Alimentación de los Animales, Nitratos, Flora Microbiana, Methane Emission, Calves, Rumen Digestion, Animal Feeding, Nitrates, Microbial Flora, Raza Holstein, Microbiota,
Acceso en línea:http://hdl.handle.net/20.500.12123/10778
https://www.sciencedirect.com/science/article/pii/S2405654521001657
https://doi.org/10.1016/j.aninu.2021.07.005
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:localhost:20.500.12123-10778
record_format koha
institution INTA AR
collection DSpace
country Argentina
countrycode AR
component Bibliográfico
access En linea
databasecode dig-inta-ar
tag biblioteca
region America del Sur
libraryname Biblioteca Central del INTA Argentina
language eng
topic Emisiones de Metano
Ternero
Digestión Ruminal
Alimentación de los Animales
Nitratos
Flora Microbiana
Methane Emission
Calves
Rumen Digestion
Animal Feeding
Nitrates
Microbial Flora
Raza Holstein
Microbiota
Emisiones de Metano
Ternero
Digestión Ruminal
Alimentación de los Animales
Nitratos
Flora Microbiana
Methane Emission
Calves
Rumen Digestion
Animal Feeding
Nitrates
Microbial Flora
Raza Holstein
Microbiota
spellingShingle Emisiones de Metano
Ternero
Digestión Ruminal
Alimentación de los Animales
Nitratos
Flora Microbiana
Methane Emission
Calves
Rumen Digestion
Animal Feeding
Nitrates
Microbial Flora
Raza Holstein
Microbiota
Emisiones de Metano
Ternero
Digestión Ruminal
Alimentación de los Animales
Nitratos
Flora Microbiana
Methane Emission
Calves
Rumen Digestion
Animal Feeding
Nitrates
Microbial Flora
Raza Holstein
Microbiota
Ortiz Chura, Abimael
Gere, José
Marcoppido, Gisela Ariana
Depetris, Gustavo
Cravero, Silvio Lorenzo Pedro
Faverin, Claudia
Pinares-Patiño, Cesar
Cataldi, Angel Adrian
Ceron Cucchi, Maria Esperanza
Dynamics of the ruminal microbial ecosystem, and inhibition of methanogenesis and propiogenesis in response to nitrate feeding to Holstein calves
description It is known that nitrate inhibits ruminal methanogenesis, mainly through competition with hydrogenotrophic methanogens for available hydrogen (H2) and also through toxic effects on the methanogens. However, there is limited knowledge about its effects on the others members of ruminal microbiota and their metabolites. In this study, we investigated the effects of dietary nitrate inclusion on enteric methane (CH4) emission, temporal changes in ruminal microbiota, and fermentation in Holstein calves. Eighteen animals were maintained in individual pens for 45 d. Animals were randomly allocated to either a control (CTR) or nitrate (NIT, containing 15 g of calcium nitrate/kg dry matter) diets. Methane emissions were estimated using the sulfur hexafluoride (SF6) tracer method. Ruminal microbiota changes and ruminal fermentation were evaluated at 0, 4, and 8 h post-feeding. In this study, feed dry matter intake (DMI) did not differ between dietary treatments (P > 0.05). Diets containing NIT reduced CH4 emissions by 27% (g/d) and yield by 21% (g/kg DMI) compared to the CTR (P < 0.05). The pH values and total volatile fatty acids (VFA) concentration did not differ between dietary treatments (P > 0.05) but differed with time, and post-feeding (P < 0.05). Increases in the concentrations of ruminal ammonia nitrogen (NH3–N) and acetate were observed, whereas propionate decreased at 4 h post-feeding with the NIT diet (P < 0.05). Feeding the NIT diet reduced the populations of total bacteria, total methanogens, Ruminococcus albus and Ruminococcus flavefaciens, and the abundance of Succiniclasticum, Coprococcus, Treponema, Shuttlewortia, Succinivibrio, Sharpea, Pseudobutyrivibrio, and Selenomona (P < 0.05); whereas, the population of total fungi, protozoa, Fibrobacter succinogenes, Atopobium and Erysipelotrichaceae L7A_E11 increased (P < 0.05). In conclusion, feeding nitrate reduces enteric CH4 emissions and the methanogens population, whereas it decreases the propionate concentration and the abundance of bacteria involved in the succinate and acrylate pathways. Despite the altered fermentation profile and ruminal microbiota, DMI was not influenced by dietary nitrate. These findings suggest that nitrate has a predominantly direct effect on the reduction of methanogenesis and propionate synthesis.
format info:ar-repo/semantics/artículo
topic_facet Emisiones de Metano
Ternero
Digestión Ruminal
Alimentación de los Animales
Nitratos
Flora Microbiana
Methane Emission
Calves
Rumen Digestion
Animal Feeding
Nitrates
Microbial Flora
Raza Holstein
Microbiota
author Ortiz Chura, Abimael
Gere, José
Marcoppido, Gisela Ariana
Depetris, Gustavo
Cravero, Silvio Lorenzo Pedro
Faverin, Claudia
Pinares-Patiño, Cesar
Cataldi, Angel Adrian
Ceron Cucchi, Maria Esperanza
author_facet Ortiz Chura, Abimael
Gere, José
Marcoppido, Gisela Ariana
Depetris, Gustavo
Cravero, Silvio Lorenzo Pedro
Faverin, Claudia
Pinares-Patiño, Cesar
Cataldi, Angel Adrian
Ceron Cucchi, Maria Esperanza
author_sort Ortiz Chura, Abimael
title Dynamics of the ruminal microbial ecosystem, and inhibition of methanogenesis and propiogenesis in response to nitrate feeding to Holstein calves
title_short Dynamics of the ruminal microbial ecosystem, and inhibition of methanogenesis and propiogenesis in response to nitrate feeding to Holstein calves
title_full Dynamics of the ruminal microbial ecosystem, and inhibition of methanogenesis and propiogenesis in response to nitrate feeding to Holstein calves
title_fullStr Dynamics of the ruminal microbial ecosystem, and inhibition of methanogenesis and propiogenesis in response to nitrate feeding to Holstein calves
title_full_unstemmed Dynamics of the ruminal microbial ecosystem, and inhibition of methanogenesis and propiogenesis in response to nitrate feeding to Holstein calves
title_sort dynamics of the ruminal microbial ecosystem, and inhibition of methanogenesis and propiogenesis in response to nitrate feeding to holstein calves
publisher Elsevier
publishDate 2021-12
url http://hdl.handle.net/20.500.12123/10778
https://www.sciencedirect.com/science/article/pii/S2405654521001657
https://doi.org/10.1016/j.aninu.2021.07.005
work_keys_str_mv AT ortizchuraabimael dynamicsoftheruminalmicrobialecosystemandinhibitionofmethanogenesisandpropiogenesisinresponsetonitratefeedingtoholsteincalves
AT gerejose dynamicsoftheruminalmicrobialecosystemandinhibitionofmethanogenesisandpropiogenesisinresponsetonitratefeedingtoholsteincalves
AT marcoppidogiselaariana dynamicsoftheruminalmicrobialecosystemandinhibitionofmethanogenesisandpropiogenesisinresponsetonitratefeedingtoholsteincalves
AT depetrisgustavo dynamicsoftheruminalmicrobialecosystemandinhibitionofmethanogenesisandpropiogenesisinresponsetonitratefeedingtoholsteincalves
AT craverosilviolorenzopedro dynamicsoftheruminalmicrobialecosystemandinhibitionofmethanogenesisandpropiogenesisinresponsetonitratefeedingtoholsteincalves
AT faverinclaudia dynamicsoftheruminalmicrobialecosystemandinhibitionofmethanogenesisandpropiogenesisinresponsetonitratefeedingtoholsteincalves
AT pinarespatinocesar dynamicsoftheruminalmicrobialecosystemandinhibitionofmethanogenesisandpropiogenesisinresponsetonitratefeedingtoholsteincalves
AT cataldiangeladrian dynamicsoftheruminalmicrobialecosystemandinhibitionofmethanogenesisandpropiogenesisinresponsetonitratefeedingtoholsteincalves
AT ceroncucchimariaesperanza dynamicsoftheruminalmicrobialecosystemandinhibitionofmethanogenesisandpropiogenesisinresponsetonitratefeedingtoholsteincalves
_version_ 1756008219376877568
spelling oai:localhost:20.500.12123-107782021-11-15T14:53:45Z Dynamics of the ruminal microbial ecosystem, and inhibition of methanogenesis and propiogenesis in response to nitrate feeding to Holstein calves Ortiz Chura, Abimael Gere, José Marcoppido, Gisela Ariana Depetris, Gustavo Cravero, Silvio Lorenzo Pedro Faverin, Claudia Pinares-Patiño, Cesar Cataldi, Angel Adrian Ceron Cucchi, Maria Esperanza Emisiones de Metano Ternero Digestión Ruminal Alimentación de los Animales Nitratos Flora Microbiana Methane Emission Calves Rumen Digestion Animal Feeding Nitrates Microbial Flora Raza Holstein Microbiota It is known that nitrate inhibits ruminal methanogenesis, mainly through competition with hydrogenotrophic methanogens for available hydrogen (H2) and also through toxic effects on the methanogens. However, there is limited knowledge about its effects on the others members of ruminal microbiota and their metabolites. In this study, we investigated the effects of dietary nitrate inclusion on enteric methane (CH4) emission, temporal changes in ruminal microbiota, and fermentation in Holstein calves. Eighteen animals were maintained in individual pens for 45 d. Animals were randomly allocated to either a control (CTR) or nitrate (NIT, containing 15 g of calcium nitrate/kg dry matter) diets. Methane emissions were estimated using the sulfur hexafluoride (SF6) tracer method. Ruminal microbiota changes and ruminal fermentation were evaluated at 0, 4, and 8 h post-feeding. In this study, feed dry matter intake (DMI) did not differ between dietary treatments (P > 0.05). Diets containing NIT reduced CH4 emissions by 27% (g/d) and yield by 21% (g/kg DMI) compared to the CTR (P < 0.05). The pH values and total volatile fatty acids (VFA) concentration did not differ between dietary treatments (P > 0.05) but differed with time, and post-feeding (P < 0.05). Increases in the concentrations of ruminal ammonia nitrogen (NH3–N) and acetate were observed, whereas propionate decreased at 4 h post-feeding with the NIT diet (P < 0.05). Feeding the NIT diet reduced the populations of total bacteria, total methanogens, Ruminococcus albus and Ruminococcus flavefaciens, and the abundance of Succiniclasticum, Coprococcus, Treponema, Shuttlewortia, Succinivibrio, Sharpea, Pseudobutyrivibrio, and Selenomona (P < 0.05); whereas, the population of total fungi, protozoa, Fibrobacter succinogenes, Atopobium and Erysipelotrichaceae L7A_E11 increased (P < 0.05). In conclusion, feeding nitrate reduces enteric CH4 emissions and the methanogens population, whereas it decreases the propionate concentration and the abundance of bacteria involved in the succinate and acrylate pathways. Despite the altered fermentation profile and ruminal microbiota, DMI was not influenced by dietary nitrate. These findings suggest that nitrate has a predominantly direct effect on the reduction of methanogenesis and propionate synthesis. Instituto de Patobiología Fil: Ortiz Chura, Abimael. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; Argentina Fil: Ortiz Chura, Abimael. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Gere, José. Universidad Tecnológica Nacional. División Investigación y Desarrollo de Ingenierías; Argentina Fil: Gere, José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Marcoppido, Gisela Ariana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; Argentina Fil: Marcoppido, Gisela Ariana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Depetris, Gustavo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina Fil: Cravero, Silvio Lorenzo Pedro. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina Fil: Cravero, Silvio Lorenzo Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Faverin, Claudia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina Fil: Pinares-Patiño, Cesar. Lincoln University. The Agribusiness Group; Nueva Zelanda Fil: Cataldi, Angel Adrian. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina Fil: Cataldi, Angel Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Ceron Cucchi, Maria Esperanza. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; Argentina Fil: Ceron Cucchi, Maria Esperanza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina 2021-11-15T14:51:24Z 2021-11-15T14:51:24Z 2021-12 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/10778 https://www.sciencedirect.com/science/article/pii/S2405654521001657 2405-6545 https://doi.org/10.1016/j.aninu.2021.07.005 eng info:eu-repograntAgreement/INTA/2019-PD-E3-I058-001/2019-PD-E3-I058-001/AR./EMISIONES (GEI) EN LOS SISTEMAS AGROPECUARIOS y FORESTALES. MEDIDAS DE MITIGACIÓN info:eu-repo/semantics/openAccess application/pdf Elsevier Animal Nutrition 7 (4) : 1205-1218 (December 2021)