Biological control of Fusarium oxysporum f. sp. lycopersici

Fungi known to produce lytic enzymes were used in an attempt to control wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici (FOL). Some of the fungal species (Penicillium oxalicum, Penicillium purpurogenum and Aspergillus nidulans) damaged hyphae of FOL in vitro and reduced the numbers of microconidia in the soil. Treatments with fungi did not result in a reduction in either chlamydospores of FOL in soil or populations of FOL in the rhizosphere of tomato. P. oxalicum was the most effective agent of biocontrol, and it reduced disease severity in both non‐autoclaved (20% decrease) and sterile soil. In sterile soil, P. oxalicum reduced disease with different levels of severity (27% decrease at high levels and 50% decrease at low levels). Disease control by A. nidulans and P purpurogenum was only achieved when disease severity was low in sterile soil (55% and 45%, respectively). Copyright © 1995, Wiley Blackwell. All rights reserved

Guardado en:
Detalles Bibliográficos
Autores principales: De Cal, A., Pascual, S., Larena, I., Melgarejo, P.
Formato: journal article biblioteca
Idioma:eng
Publicado: 1995
Acceso en línea:http://hdl.handle.net/20.500.12792/6067
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Fungi known to produce lytic enzymes were used in an attempt to control wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici (FOL). Some of the fungal species (Penicillium oxalicum, Penicillium purpurogenum and Aspergillus nidulans) damaged hyphae of FOL in vitro and reduced the numbers of microconidia in the soil. Treatments with fungi did not result in a reduction in either chlamydospores of FOL in soil or populations of FOL in the rhizosphere of tomato. P. oxalicum was the most effective agent of biocontrol, and it reduced disease severity in both non‐autoclaved (20% decrease) and sterile soil. In sterile soil, P. oxalicum reduced disease with different levels of severity (27% decrease at high levels and 50% decrease at low levels). Disease control by A. nidulans and P purpurogenum was only achieved when disease severity was low in sterile soil (55% and 45%, respectively). Copyright © 1995, Wiley Blackwell. All rights reserved