Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate

Biomass and leaf area equations are often required to assess or model forest productivity, carbon stocks and other ecosystem services. These factors are influenced by climate, age and stand structural attributes including stand density and tree species diversity or species composition. However, such covariates are rarely included in biomass and leaf area equations. We reviewed the literature and built a database of biomass and leaf area equations for 24 European tree species and 3 introduced species. The final dataset contained 973 equations. Most of the equations were site-specific and therefore restricted to the edaphic, climatic and stand structural conditions of the given site. To overcome this limitation, the database was used to develop regional species-specific equations that can be used in a wide range of stands and to quantify the effects of climate, age and stand structure on biomass or leaf area. The analysis showed considerable inter- and intra-specific variability in biomass relationships. The intra-specific variability was related to climate, age or stand characteristics, while the inter-specific variability was correlated with traits such as wood density, specific leaf area and shade tolerance. The analysis also showed that foliage mass is more variable than stem or total aboveground biomass, both within and between species, and these biomass components have contrasting responses to age and changes in stand structure. Despite the large number of published equations, many species are still not well represented. Therefore, generic equations were developed that include species-specific wood density instead of species identity. Further improvements may be possible if future studies quantify the stand structure of individual tree neighbourhoods instead of using the stand means for all trees sampled with the given stand. © 2017 The Authors

Saved in:
Bibliographic Details
Main Authors: Forrester, D. I., Tachauer, I. H. H., Annighoefer, P., Barbeito, I., Pretzsch, H., Ruiz-Peinado, R., Stark, H., Vacchiano, G., Zlatanov, T., Chakraborty, T., Saha, S., Sileshi, G. W.
Format: journal article biblioteca
Language:eng
Published: 2017
Online Access:http://hdl.handle.net/20.500.12792/1482
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-inia-es-20.500.12792-1482
record_format koha
spelling dig-inia-es-20.500.12792-14822020-12-15T09:52:31Z Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate Forrester, D. I. Tachauer, I. H. H. Annighoefer, P. Barbeito, I. Pretzsch, H. Ruiz-Peinado, R. Stark, H. Vacchiano, G. Zlatanov, T. Chakraborty, T. Saha, S. Sileshi, G. W. Biomass and leaf area equations are often required to assess or model forest productivity, carbon stocks and other ecosystem services. These factors are influenced by climate, age and stand structural attributes including stand density and tree species diversity or species composition. However, such covariates are rarely included in biomass and leaf area equations. We reviewed the literature and built a database of biomass and leaf area equations for 24 European tree species and 3 introduced species. The final dataset contained 973 equations. Most of the equations were site-specific and therefore restricted to the edaphic, climatic and stand structural conditions of the given site. To overcome this limitation, the database was used to develop regional species-specific equations that can be used in a wide range of stands and to quantify the effects of climate, age and stand structure on biomass or leaf area. The analysis showed considerable inter- and intra-specific variability in biomass relationships. The intra-specific variability was related to climate, age or stand characteristics, while the inter-specific variability was correlated with traits such as wood density, specific leaf area and shade tolerance. The analysis also showed that foliage mass is more variable than stem or total aboveground biomass, both within and between species, and these biomass components have contrasting responses to age and changes in stand structure. Despite the large number of published equations, many species are still not well represented. Therefore, generic equations were developed that include species-specific wood density instead of species identity. Further improvements may be possible if future studies quantify the stand structure of individual tree neighbourhoods instead of using the stand means for all trees sampled with the given stand. © 2017 The Authors 2020-10-22T11:58:10Z 2020-10-22T11:58:10Z 2017 journal article http://hdl.handle.net/20.500.12792/1482 10.1016/j.foreco.2017.04.011 eng Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ open access
institution INIA ES
collection DSpace
country España
countrycode ES
component Bibliográfico
access En linea
databasecode dig-inia-es
tag biblioteca
region Europa del Sur
libraryname Biblioteca del INIA España
language eng
description Biomass and leaf area equations are often required to assess or model forest productivity, carbon stocks and other ecosystem services. These factors are influenced by climate, age and stand structural attributes including stand density and tree species diversity or species composition. However, such covariates are rarely included in biomass and leaf area equations. We reviewed the literature and built a database of biomass and leaf area equations for 24 European tree species and 3 introduced species. The final dataset contained 973 equations. Most of the equations were site-specific and therefore restricted to the edaphic, climatic and stand structural conditions of the given site. To overcome this limitation, the database was used to develop regional species-specific equations that can be used in a wide range of stands and to quantify the effects of climate, age and stand structure on biomass or leaf area. The analysis showed considerable inter- and intra-specific variability in biomass relationships. The intra-specific variability was related to climate, age or stand characteristics, while the inter-specific variability was correlated with traits such as wood density, specific leaf area and shade tolerance. The analysis also showed that foliage mass is more variable than stem or total aboveground biomass, both within and between species, and these biomass components have contrasting responses to age and changes in stand structure. Despite the large number of published equations, many species are still not well represented. Therefore, generic equations were developed that include species-specific wood density instead of species identity. Further improvements may be possible if future studies quantify the stand structure of individual tree neighbourhoods instead of using the stand means for all trees sampled with the given stand. © 2017 The Authors
format journal article
author Forrester, D. I.
Tachauer, I. H. H.
Annighoefer, P.
Barbeito, I.
Pretzsch, H.
Ruiz-Peinado, R.
Stark, H.
Vacchiano, G.
Zlatanov, T.
Chakraborty, T.
Saha, S.
Sileshi, G. W.
spellingShingle Forrester, D. I.
Tachauer, I. H. H.
Annighoefer, P.
Barbeito, I.
Pretzsch, H.
Ruiz-Peinado, R.
Stark, H.
Vacchiano, G.
Zlatanov, T.
Chakraborty, T.
Saha, S.
Sileshi, G. W.
Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate
author_facet Forrester, D. I.
Tachauer, I. H. H.
Annighoefer, P.
Barbeito, I.
Pretzsch, H.
Ruiz-Peinado, R.
Stark, H.
Vacchiano, G.
Zlatanov, T.
Chakraborty, T.
Saha, S.
Sileshi, G. W.
author_sort Forrester, D. I.
title Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate
title_short Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate
title_full Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate
title_fullStr Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate
title_full_unstemmed Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate
title_sort generalized biomass and leaf area allometric equations for european tree species incorporating stand structure, tree age and climate
publishDate 2017
url http://hdl.handle.net/20.500.12792/1482
work_keys_str_mv AT forresterdi generalizedbiomassandleafareaallometricequationsforeuropeantreespeciesincorporatingstandstructuretreeageandclimate
AT tachauerihh generalizedbiomassandleafareaallometricequationsforeuropeantreespeciesincorporatingstandstructuretreeageandclimate
AT annighoeferp generalizedbiomassandleafareaallometricequationsforeuropeantreespeciesincorporatingstandstructuretreeageandclimate
AT barbeitoi generalizedbiomassandleafareaallometricequationsforeuropeantreespeciesincorporatingstandstructuretreeageandclimate
AT pretzschh generalizedbiomassandleafareaallometricequationsforeuropeantreespeciesincorporatingstandstructuretreeageandclimate
AT ruizpeinador generalizedbiomassandleafareaallometricequationsforeuropeantreespeciesincorporatingstandstructuretreeageandclimate
AT starkh generalizedbiomassandleafareaallometricequationsforeuropeantreespeciesincorporatingstandstructuretreeageandclimate
AT vacchianog generalizedbiomassandleafareaallometricequationsforeuropeantreespeciesincorporatingstandstructuretreeageandclimate
AT zlatanovt generalizedbiomassandleafareaallometricequationsforeuropeantreespeciesincorporatingstandstructuretreeageandclimate
AT chakrabortyt generalizedbiomassandleafareaallometricequationsforeuropeantreespeciesincorporatingstandstructuretreeageandclimate
AT sahas generalizedbiomassandleafareaallometricequationsforeuropeantreespeciesincorporatingstandstructuretreeageandclimate
AT sileshigw generalizedbiomassandleafareaallometricequationsforeuropeantreespeciesincorporatingstandstructuretreeageandclimate
_version_ 1758004915919126528