Climate and species functional traits influence maximum live tree stocking in the Lake States, USA

Quantifying the density of live trees in forest stands and partitioning it between species or other stand components is critical for predicting forest dynamics and responses to management, as well as understanding the impacts of stand composition and structure on productivity. As plant traits such as shade tolerance have been proven to refine understanding of plant community dynamics, we extended a previous model relating maximum stand density to wood specific gravity to incorporate shade tolerance as an additional functional trait. Additionally, we included climatic variables that might influence ecological dynamics and modulate species-specific traits, across a region and also potentially over time under climate change scenarios. We used data from the USDA Forest Service, Forest Inventory and Analysis program for three states in the northern United States (Minnesota, Wisconsin, and Michigan) that reflect strong gradients in climate and species composition, to fit a maximum density model by quantile regression. The resulting strictly additive density measure conforms well to both existing silvicultural guidance and to observed densities of monocultures that lack such guidance. Wood specific gravity appears to interact with precipitation, while shade tolerance interacts with temperature, in driving maximum density relationships. Our proposed maximum stand density model is not only parsimonious for field application in management situations, but also empowers the evaluation of the effects of future climate and tree range scenarios on forest management guidelines. © 2016

Saved in:
Bibliographic Details
Main Authors: Ducey, M. J., Woodall, C. W., Bravo-Oviedo, A.
Format: journal article biblioteca
Language:eng
Published: 2017
Online Access:http://hdl.handle.net/20.500.12792/1157
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-inia-es-20.500.12792-1157
record_format koha
spelling dig-inia-es-20.500.12792-11572020-12-15T09:47:50Z Climate and species functional traits influence maximum live tree stocking in the Lake States, USA Ducey, M. J. Woodall, C. W. Bravo-Oviedo, A. Quantifying the density of live trees in forest stands and partitioning it between species or other stand components is critical for predicting forest dynamics and responses to management, as well as understanding the impacts of stand composition and structure on productivity. As plant traits such as shade tolerance have been proven to refine understanding of plant community dynamics, we extended a previous model relating maximum stand density to wood specific gravity to incorporate shade tolerance as an additional functional trait. Additionally, we included climatic variables that might influence ecological dynamics and modulate species-specific traits, across a region and also potentially over time under climate change scenarios. We used data from the USDA Forest Service, Forest Inventory and Analysis program for three states in the northern United States (Minnesota, Wisconsin, and Michigan) that reflect strong gradients in climate and species composition, to fit a maximum density model by quantile regression. The resulting strictly additive density measure conforms well to both existing silvicultural guidance and to observed densities of monocultures that lack such guidance. Wood specific gravity appears to interact with precipitation, while shade tolerance interacts with temperature, in driving maximum density relationships. Our proposed maximum stand density model is not only parsimonious for field application in management situations, but also empowers the evaluation of the effects of future climate and tree range scenarios on forest management guidelines. © 2016 2020-10-22T11:46:37Z 2020-10-22T11:46:37Z 2017 journal article http://hdl.handle.net/20.500.12792/1157 10.1016/j.foreco.2016.12.007 eng Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ open access
institution INIA ES
collection DSpace
country España
countrycode ES
component Bibliográfico
access En linea
databasecode dig-inia-es
tag biblioteca
region Europa del Sur
libraryname Biblioteca del INIA España
language eng
description Quantifying the density of live trees in forest stands and partitioning it between species or other stand components is critical for predicting forest dynamics and responses to management, as well as understanding the impacts of stand composition and structure on productivity. As plant traits such as shade tolerance have been proven to refine understanding of plant community dynamics, we extended a previous model relating maximum stand density to wood specific gravity to incorporate shade tolerance as an additional functional trait. Additionally, we included climatic variables that might influence ecological dynamics and modulate species-specific traits, across a region and also potentially over time under climate change scenarios. We used data from the USDA Forest Service, Forest Inventory and Analysis program for three states in the northern United States (Minnesota, Wisconsin, and Michigan) that reflect strong gradients in climate and species composition, to fit a maximum density model by quantile regression. The resulting strictly additive density measure conforms well to both existing silvicultural guidance and to observed densities of monocultures that lack such guidance. Wood specific gravity appears to interact with precipitation, while shade tolerance interacts with temperature, in driving maximum density relationships. Our proposed maximum stand density model is not only parsimonious for field application in management situations, but also empowers the evaluation of the effects of future climate and tree range scenarios on forest management guidelines. © 2016
format journal article
author Ducey, M. J.
Woodall, C. W.
Bravo-Oviedo, A.
spellingShingle Ducey, M. J.
Woodall, C. W.
Bravo-Oviedo, A.
Climate and species functional traits influence maximum live tree stocking in the Lake States, USA
author_facet Ducey, M. J.
Woodall, C. W.
Bravo-Oviedo, A.
author_sort Ducey, M. J.
title Climate and species functional traits influence maximum live tree stocking in the Lake States, USA
title_short Climate and species functional traits influence maximum live tree stocking in the Lake States, USA
title_full Climate and species functional traits influence maximum live tree stocking in the Lake States, USA
title_fullStr Climate and species functional traits influence maximum live tree stocking in the Lake States, USA
title_full_unstemmed Climate and species functional traits influence maximum live tree stocking in the Lake States, USA
title_sort climate and species functional traits influence maximum live tree stocking in the lake states, usa
publishDate 2017
url http://hdl.handle.net/20.500.12792/1157
work_keys_str_mv AT duceymj climateandspeciesfunctionaltraitsinfluencemaximumlivetreestockinginthelakestatesusa
AT woodallcw climateandspeciesfunctionaltraitsinfluencemaximumlivetreestockinginthelakestatesusa
AT bravooviedoa climateandspeciesfunctionaltraitsinfluencemaximumlivetreestockinginthelakestatesusa
_version_ 1758004929289519104