What have we learned from brucellosis in the mouse model?

AbstractBrucellosis is a zoonosis caused by Brucella species. Brucellosis research in natural hosts is often precluded by practical, economical and ethical reasons and mice are widely used. However, mice are not natural Brucella hosts and the course of murine brucellosis depends on bacterial strain virulence, dose and inoculation route as well as breed, genetic background, age, sex and physiological statu of mice. Therefore, meaningful experiments require a definition of these variables. Brucella spleen replication profiles are highly reproducible and course in four phases: i), onset or spleen colonization (first 48 h); ii), acute phase, from the third day to the time when bacteria reach maximal numbers; iii), chronic steady phase, where bacterial numbers plateaus; and iv), chronic declining phase, during which brucellae are eliminated. This pattern displays clear physiopathological signs and is sensitive to small virulence variations, making possible to assess attenuation when fully virulent bacteria are used as controls. Similarly, immunity studies using mice with known defects are possible. Mutations affecting INF-γ, TLR9, Myd88, Tγδ and TNF-β favor Brucella replication; whereas IL-1β, IL-18, TLR4, TLR5, TLR2, NOD1, NOD2, GM-CSF, IL/17r, Rip2, TRIF, NK or Nramp1 deficiencies have no noticeable effects. Splenomegaly development is also useful: it correlates with IFN-γ and IL-12 levels and with Brucella strain virulence. The genetic background is also important: Brucella-resistant mice (C57BL) yield lower splenic bacterial replication and less splenomegaly than susceptible breeds. When inoculum is increased, a saturating dose above which bacterial numbers per organ do not augment, is reached. Unlike many gram-negative bacteria, lethal doses are large (≥ 108 bacteria/mouse) and normally higher than the saturating dose. Persistence is a useful virulence/attenuation index and is used in vaccine (Residual Virulence) quality control. Vaccine candidates are also often tested in mice by determining splenic Brucella numbers after challenging with appropriate virulent brucellae doses at precise post-vaccination times. Since most live or killed Brucella vaccines provide some protection in mice, controls immunized with reference vaccines (S19 or Rev1) are critical. Finally, mice have been successfully used to evaluate brucellosis therapies. It is concluded that, when used properly, the mouse is a valuable brucellosis model.

Saved in:
Bibliographic Details
Main Authors: Grilló, María Jesús, Blasco, José M., Gorvel, Jean P, Moriyón, Ignacio, Moreno Robles, Eduardo
Format: artículo biblioteca
Language:English
Published: BioMed Central 2012-04-13
Online Access:http://dx.doi.org/10.1186/1297-9716-43-29
http://hdl.handle.net/10261/54445
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-idab-es-10261-54445
record_format koha
spelling dig-idab-es-10261-544452016-08-29T11:44:13Z What have we learned from brucellosis in the mouse model? Grilló, María Jesús Blasco, José M. Gorvel, Jean P Moriyón, Ignacio Moreno Robles, Eduardo AbstractBrucellosis is a zoonosis caused by Brucella species. Brucellosis research in natural hosts is often precluded by practical, economical and ethical reasons and mice are widely used. However, mice are not natural Brucella hosts and the course of murine brucellosis depends on bacterial strain virulence, dose and inoculation route as well as breed, genetic background, age, sex and physiological statu of mice. Therefore, meaningful experiments require a definition of these variables. Brucella spleen replication profiles are highly reproducible and course in four phases: i), onset or spleen colonization (first 48 h); ii), acute phase, from the third day to the time when bacteria reach maximal numbers; iii), chronic steady phase, where bacterial numbers plateaus; and iv), chronic declining phase, during which brucellae are eliminated. This pattern displays clear physiopathological signs and is sensitive to small virulence variations, making possible to assess attenuation when fully virulent bacteria are used as controls. Similarly, immunity studies using mice with known defects are possible. Mutations affecting INF-γ, TLR9, Myd88, Tγδ and TNF-β favor Brucella replication; whereas IL-1β, IL-18, TLR4, TLR5, TLR2, NOD1, NOD2, GM-CSF, IL/17r, Rip2, TRIF, NK or Nramp1 deficiencies have no noticeable effects. Splenomegaly development is also useful: it correlates with IFN-γ and IL-12 levels and with Brucella strain virulence. The genetic background is also important: Brucella-resistant mice (C57BL) yield lower splenic bacterial replication and less splenomegaly than susceptible breeds. When inoculum is increased, a saturating dose above which bacterial numbers per organ do not augment, is reached. Unlike many gram-negative bacteria, lethal doses are large (≥ 108 bacteria/mouse) and normally higher than the saturating dose. Persistence is a useful virulence/attenuation index and is used in vaccine (Residual Virulence) quality control. Vaccine candidates are also often tested in mice by determining splenic Brucella numbers after challenging with appropriate virulent brucellae doses at precise post-vaccination times. Since most live or killed Brucella vaccines provide some protection in mice, controls immunized with reference vaccines (S19 or Rev1) are critical. Finally, mice have been successfully used to evaluate brucellosis therapies. It is concluded that, when used properly, the mouse is a valuable brucellosis model. This work was performed under agreement contract 2010020113, subscribed by UNA from Costa Rica and, CSIC, CITA, and UN from Spain. This work was funded by grants FIDA-2009 UNA, FS-CONARE UNA/UCR, NeTropica 8, and MICIT/CONICIT, CSIC-CRUSA (2010CR0005) from Costa Rica; and CICYT-MICINN (AGL2010-20247, AGL2008-04514-C03-00 and AGL2011-30453-C04-00) projects from Spain and grant ANR2010BLAN1308 Brutir., form France. This work was done as part of the UCR/DAAD Humboldt Fellow award 2012 to EM. Peer Reviewed 2012-08-02T15:01:43Z 2012-08-02T15:01:43Z 2012-04-13 2012-08-02T15:01:43Z artículo http://purl.org/coar/resource_type/c_6501 http://dx.doi.org/10.1186/1297-9716-43-29 Veterinary Research 43(1) : 29- (2012) http://hdl.handle.net/10261/54445 en Publisher’s version open BioMed Central
institution IDAB ES
collection DSpace
country España
countrycode ES
component Bibliográfico
access En linea
databasecode dig-idab-es
tag biblioteca
region Europa del Sur
libraryname Biblioteca del IDAB España
language English
description AbstractBrucellosis is a zoonosis caused by Brucella species. Brucellosis research in natural hosts is often precluded by practical, economical and ethical reasons and mice are widely used. However, mice are not natural Brucella hosts and the course of murine brucellosis depends on bacterial strain virulence, dose and inoculation route as well as breed, genetic background, age, sex and physiological statu of mice. Therefore, meaningful experiments require a definition of these variables. Brucella spleen replication profiles are highly reproducible and course in four phases: i), onset or spleen colonization (first 48 h); ii), acute phase, from the third day to the time when bacteria reach maximal numbers; iii), chronic steady phase, where bacterial numbers plateaus; and iv), chronic declining phase, during which brucellae are eliminated. This pattern displays clear physiopathological signs and is sensitive to small virulence variations, making possible to assess attenuation when fully virulent bacteria are used as controls. Similarly, immunity studies using mice with known defects are possible. Mutations affecting INF-γ, TLR9, Myd88, Tγδ and TNF-β favor Brucella replication; whereas IL-1β, IL-18, TLR4, TLR5, TLR2, NOD1, NOD2, GM-CSF, IL/17r, Rip2, TRIF, NK or Nramp1 deficiencies have no noticeable effects. Splenomegaly development is also useful: it correlates with IFN-γ and IL-12 levels and with Brucella strain virulence. The genetic background is also important: Brucella-resistant mice (C57BL) yield lower splenic bacterial replication and less splenomegaly than susceptible breeds. When inoculum is increased, a saturating dose above which bacterial numbers per organ do not augment, is reached. Unlike many gram-negative bacteria, lethal doses are large (≥ 108 bacteria/mouse) and normally higher than the saturating dose. Persistence is a useful virulence/attenuation index and is used in vaccine (Residual Virulence) quality control. Vaccine candidates are also often tested in mice by determining splenic Brucella numbers after challenging with appropriate virulent brucellae doses at precise post-vaccination times. Since most live or killed Brucella vaccines provide some protection in mice, controls immunized with reference vaccines (S19 or Rev1) are critical. Finally, mice have been successfully used to evaluate brucellosis therapies. It is concluded that, when used properly, the mouse is a valuable brucellosis model.
format artículo
author Grilló, María Jesús
Blasco, José M.
Gorvel, Jean P
Moriyón, Ignacio
Moreno Robles, Eduardo
spellingShingle Grilló, María Jesús
Blasco, José M.
Gorvel, Jean P
Moriyón, Ignacio
Moreno Robles, Eduardo
What have we learned from brucellosis in the mouse model?
author_facet Grilló, María Jesús
Blasco, José M.
Gorvel, Jean P
Moriyón, Ignacio
Moreno Robles, Eduardo
author_sort Grilló, María Jesús
title What have we learned from brucellosis in the mouse model?
title_short What have we learned from brucellosis in the mouse model?
title_full What have we learned from brucellosis in the mouse model?
title_fullStr What have we learned from brucellosis in the mouse model?
title_full_unstemmed What have we learned from brucellosis in the mouse model?
title_sort what have we learned from brucellosis in the mouse model?
publisher BioMed Central
publishDate 2012-04-13
url http://dx.doi.org/10.1186/1297-9716-43-29
http://hdl.handle.net/10261/54445
work_keys_str_mv AT grillomariajesus whathavewelearnedfrombrucellosisinthemousemodel
AT blascojosem whathavewelearnedfrombrucellosisinthemousemodel
AT gorveljeanp whathavewelearnedfrombrucellosisinthemousemodel
AT moriyonignacio whathavewelearnedfrombrucellosisinthemousemodel
AT morenorobleseduardo whathavewelearnedfrombrucellosisinthemousemodel
_version_ 1777663419703361536