DuPLO: A DUal view Point deep Learning architecture for time series classificatiOn
Nowadays, modern Earth Observation systems continuously generate huge amounts of data. A notable example is represented by the Sentinel-2 mission, which provides images at high spatial resolution (up to 10 m) with high temporal revisit period (every 5 days), which can be organized in Satellite Image Time Series (SITS). While the use of SITS has been proved to be beneficial in the context of Land Use/Land Cover (LULC) map generation, unfortunately, most of machine learning approaches commonly leveraged in remote sensing field fail to take advantage of spatio-temporal dependencies present in such data. Recently, new generation deep learning methods allowed to significantly advance research in this field. These approaches have generally focused on a single type of neural network, i.e., Convolutional Neural Networks (CNNs) or Recurrent Neural Networks (RNNs), which model different but complementary information: spatial autocorrelation (CNNs) and temporal dependencies (RNNs). In this work, we propose the first deep learning architecture for the analysis of SITS data, namely DuPLO (DUal view Point deep Learning architecture for time series classificatiOn), that combines Convolutional and Recurrent neural networks to exploit their complementarity. Our hypothesis is that, since CNNs and RNNs capture different aspects of the data, a combination of both models would produce a more diverse and complete representation of the information for the underlying land cover classification task. Experiments carried out on two study sites characterized by different land cover characteristics (i.e., the Gard site in Mainland France and Reunion Island, a overseas department of France in the Indian Ocean), demonstrate the significance of our proposal.
Main Authors: | , , , |
---|---|
Format: | article biblioteca |
Language: | eng |
Subjects: | U30 - Méthodes de recherche, U10 - Informatique, mathématiques et statistiques, E11 - Économie et politique foncières, télédétection, cartographie de l'occupation du sol, cartographie de l'utilisation des terres, analyse d'image, méthode statistique, http://aims.fao.org/aos/agrovoc/c_6498, http://aims.fao.org/aos/agrovoc/c_9000094, http://aims.fao.org/aos/agrovoc/c_9000100, http://aims.fao.org/aos/agrovoc/c_36762, http://aims.fao.org/aos/agrovoc/c_7377, http://aims.fao.org/aos/agrovoc/c_3081, http://aims.fao.org/aos/agrovoc/c_6543, |
Online Access: | http://agritrop.cirad.fr/592819/ http://agritrop.cirad.fr/592819/1/Interdonato2019.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
dig-cirad-fr-592819 |
---|---|
record_format |
koha |
spelling |
dig-cirad-fr-5928192024-01-29T02:04:16Z http://agritrop.cirad.fr/592819/ http://agritrop.cirad.fr/592819/ DuPLO: A DUal view Point deep Learning architecture for time series classificatiOn. Interdonato Roberto, Ienco Dino, Gaetano Raffaele, Osé Kenji. 2019. ISPRS Journal of Photogrammetry and Remote Sensing, 149 : 91-104.https://doi.org/10.1016/j.isprsjprs.2019.01.011 <https://doi.org/10.1016/j.isprsjprs.2019.01.011> DuPLO: A DUal view Point deep Learning architecture for time series classificatiOn Interdonato, Roberto Ienco, Dino Gaetano, Raffaele Osé, Kenji eng 2019 ISPRS Journal of Photogrammetry and Remote Sensing U30 - Méthodes de recherche U10 - Informatique, mathématiques et statistiques E11 - Économie et politique foncières télédétection cartographie de l'occupation du sol cartographie de l'utilisation des terres analyse d'image méthode statistique http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_9000094 http://aims.fao.org/aos/agrovoc/c_9000100 http://aims.fao.org/aos/agrovoc/c_36762 http://aims.fao.org/aos/agrovoc/c_7377 France La Réunion http://aims.fao.org/aos/agrovoc/c_3081 http://aims.fao.org/aos/agrovoc/c_6543 Nowadays, modern Earth Observation systems continuously generate huge amounts of data. A notable example is represented by the Sentinel-2 mission, which provides images at high spatial resolution (up to 10 m) with high temporal revisit period (every 5 days), which can be organized in Satellite Image Time Series (SITS). While the use of SITS has been proved to be beneficial in the context of Land Use/Land Cover (LULC) map generation, unfortunately, most of machine learning approaches commonly leveraged in remote sensing field fail to take advantage of spatio-temporal dependencies present in such data. Recently, new generation deep learning methods allowed to significantly advance research in this field. These approaches have generally focused on a single type of neural network, i.e., Convolutional Neural Networks (CNNs) or Recurrent Neural Networks (RNNs), which model different but complementary information: spatial autocorrelation (CNNs) and temporal dependencies (RNNs). In this work, we propose the first deep learning architecture for the analysis of SITS data, namely DuPLO (DUal view Point deep Learning architecture for time series classificatiOn), that combines Convolutional and Recurrent neural networks to exploit their complementarity. Our hypothesis is that, since CNNs and RNNs capture different aspects of the data, a combination of both models would produce a more diverse and complete representation of the information for the underlying land cover classification task. Experiments carried out on two study sites characterized by different land cover characteristics (i.e., the Gard site in Mainland France and Reunion Island, a overseas department of France in the Indian Ocean), demonstrate the significance of our proposal. article info:eu-repo/semantics/article Journal Article info:eu-repo/semantics/publishedVersion http://agritrop.cirad.fr/592819/1/Interdonato2019.pdf text Cirad license info:eu-repo/semantics/restrictedAccess https://agritrop.cirad.fr/mention_legale.html https://doi.org/10.1016/j.isprsjprs.2019.01.011 10.1016/j.isprsjprs.2019.01.011 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.isprsjprs.2019.01.011 info:eu-repo/semantics/altIdentifier/purl/https://doi.org/10.1016/j.isprsjprs.2019.01.011 info:eu-repo/semantics/reference/purl/https://doi.org/10.18167/DVN1/TOARDN |
institution |
CIRAD FR |
collection |
DSpace |
country |
Francia |
countrycode |
FR |
component |
Bibliográfico |
access |
En linea |
databasecode |
dig-cirad-fr |
tag |
biblioteca |
region |
Europa del Oeste |
libraryname |
Biblioteca del CIRAD Francia |
language |
eng |
topic |
U30 - Méthodes de recherche U10 - Informatique, mathématiques et statistiques E11 - Économie et politique foncières télédétection cartographie de l'occupation du sol cartographie de l'utilisation des terres analyse d'image méthode statistique http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_9000094 http://aims.fao.org/aos/agrovoc/c_9000100 http://aims.fao.org/aos/agrovoc/c_36762 http://aims.fao.org/aos/agrovoc/c_7377 http://aims.fao.org/aos/agrovoc/c_3081 http://aims.fao.org/aos/agrovoc/c_6543 U30 - Méthodes de recherche U10 - Informatique, mathématiques et statistiques E11 - Économie et politique foncières télédétection cartographie de l'occupation du sol cartographie de l'utilisation des terres analyse d'image méthode statistique http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_9000094 http://aims.fao.org/aos/agrovoc/c_9000100 http://aims.fao.org/aos/agrovoc/c_36762 http://aims.fao.org/aos/agrovoc/c_7377 http://aims.fao.org/aos/agrovoc/c_3081 http://aims.fao.org/aos/agrovoc/c_6543 |
spellingShingle |
U30 - Méthodes de recherche U10 - Informatique, mathématiques et statistiques E11 - Économie et politique foncières télédétection cartographie de l'occupation du sol cartographie de l'utilisation des terres analyse d'image méthode statistique http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_9000094 http://aims.fao.org/aos/agrovoc/c_9000100 http://aims.fao.org/aos/agrovoc/c_36762 http://aims.fao.org/aos/agrovoc/c_7377 http://aims.fao.org/aos/agrovoc/c_3081 http://aims.fao.org/aos/agrovoc/c_6543 U30 - Méthodes de recherche U10 - Informatique, mathématiques et statistiques E11 - Économie et politique foncières télédétection cartographie de l'occupation du sol cartographie de l'utilisation des terres analyse d'image méthode statistique http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_9000094 http://aims.fao.org/aos/agrovoc/c_9000100 http://aims.fao.org/aos/agrovoc/c_36762 http://aims.fao.org/aos/agrovoc/c_7377 http://aims.fao.org/aos/agrovoc/c_3081 http://aims.fao.org/aos/agrovoc/c_6543 Interdonato, Roberto Ienco, Dino Gaetano, Raffaele Osé, Kenji DuPLO: A DUal view Point deep Learning architecture for time series classificatiOn |
description |
Nowadays, modern Earth Observation systems continuously generate huge amounts of data. A notable example is represented by the Sentinel-2 mission, which provides images at high spatial resolution (up to 10 m) with high temporal revisit period (every 5 days), which can be organized in Satellite Image Time Series (SITS). While the use of SITS has been proved to be beneficial in the context of Land Use/Land Cover (LULC) map generation, unfortunately, most of machine learning approaches commonly leveraged in remote sensing field fail to take advantage of spatio-temporal dependencies present in such data. Recently, new generation deep learning methods allowed to significantly advance research in this field. These approaches have generally focused on a single type of neural network, i.e., Convolutional Neural Networks (CNNs) or Recurrent Neural Networks (RNNs), which model different but complementary information: spatial autocorrelation (CNNs) and temporal dependencies (RNNs). In this work, we propose the first deep learning architecture for the analysis of SITS data, namely DuPLO (DUal view Point deep Learning architecture for time series classificatiOn), that combines Convolutional and Recurrent neural networks to exploit their complementarity. Our hypothesis is that, since CNNs and RNNs capture different aspects of the data, a combination of both models would produce a more diverse and complete representation of the information for the underlying land cover classification task. Experiments carried out on two study sites characterized by different land cover characteristics (i.e., the Gard site in Mainland France and Reunion Island, a overseas department of France in the Indian Ocean), demonstrate the significance of our proposal. |
format |
article |
topic_facet |
U30 - Méthodes de recherche U10 - Informatique, mathématiques et statistiques E11 - Économie et politique foncières télédétection cartographie de l'occupation du sol cartographie de l'utilisation des terres analyse d'image méthode statistique http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_9000094 http://aims.fao.org/aos/agrovoc/c_9000100 http://aims.fao.org/aos/agrovoc/c_36762 http://aims.fao.org/aos/agrovoc/c_7377 http://aims.fao.org/aos/agrovoc/c_3081 http://aims.fao.org/aos/agrovoc/c_6543 |
author |
Interdonato, Roberto Ienco, Dino Gaetano, Raffaele Osé, Kenji |
author_facet |
Interdonato, Roberto Ienco, Dino Gaetano, Raffaele Osé, Kenji |
author_sort |
Interdonato, Roberto |
title |
DuPLO: A DUal view Point deep Learning architecture for time series classificatiOn |
title_short |
DuPLO: A DUal view Point deep Learning architecture for time series classificatiOn |
title_full |
DuPLO: A DUal view Point deep Learning architecture for time series classificatiOn |
title_fullStr |
DuPLO: A DUal view Point deep Learning architecture for time series classificatiOn |
title_full_unstemmed |
DuPLO: A DUal view Point deep Learning architecture for time series classificatiOn |
title_sort |
duplo: a dual view point deep learning architecture for time series classification |
url |
http://agritrop.cirad.fr/592819/ http://agritrop.cirad.fr/592819/1/Interdonato2019.pdf |
work_keys_str_mv |
AT interdonatoroberto duploadualviewpointdeeplearningarchitecturefortimeseriesclassification AT iencodino duploadualviewpointdeeplearningarchitecturefortimeseriesclassification AT gaetanoraffaele duploadualviewpointdeeplearningarchitecturefortimeseriesclassification AT osekenji duploadualviewpointdeeplearningarchitecturefortimeseriesclassification |
_version_ |
1792499763062505472 |