Mining sequential patterns from MODIS time Series for cultivated area mapping

To predict and respond to famine and other forms of food insecurity, different early warning systems are using remote analyses of crop condition and agricultural production, using satellite-based information. To improve these predictions, a reliable estimation of the cultivated area at national scale must be carried out. In this study, we developed a data mining methodology for extracting cultivated domain patterns based on their temporal behavior as captured in time-series of moderate resolution remote sensing MODIS images.

Saved in:
Bibliographic Details
Main Authors: Pitarch, Yoann, Vintrou, Elodie, Badra, Fadi, Bégué, Agnès, Teisseire, Maguelonne
Format: book_section biblioteca
Language:eng
Published: Springer [Allemagne]
Subjects:U10 - Informatique, mathématiques et statistiques, U30 - Méthodes de recherche, P31 - Levés et cartographie des sols, télédétection, modèle mathématique, cartographie, terre cultivée, utilisation des terres, sol arable, sécurité alimentaire, http://aims.fao.org/aos/agrovoc/c_6498, http://aims.fao.org/aos/agrovoc/c_24199, http://aims.fao.org/aos/agrovoc/c_1344, http://aims.fao.org/aos/agrovoc/c_16212, http://aims.fao.org/aos/agrovoc/c_4182, http://aims.fao.org/aos/agrovoc/c_568, http://aims.fao.org/aos/agrovoc/c_10967, http://aims.fao.org/aos/agrovoc/c_4540, http://aims.fao.org/aos/agrovoc/c_166,
Online Access:http://agritrop.cirad.fr/559881/
http://agritrop.cirad.fr/559881/1/document_559881.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!