Mining sequential patterns from MODIS time Series for cultivated area mapping
To predict and respond to famine and other forms of food insecurity, different early warning systems are using remote analyses of crop condition and agricultural production, using satellite-based information. To improve these predictions, a reliable estimation of the cultivated area at national scale must be carried out. In this study, we developed a data mining methodology for extracting cultivated domain patterns based on their temporal behavior as captured in time-series of moderate resolution remote sensing MODIS images.
Main Authors: | , , , , |
---|---|
Format: | book_section biblioteca |
Language: | eng |
Published: |
Springer [Allemagne]
|
Subjects: | U10 - Informatique, mathématiques et statistiques, U30 - Méthodes de recherche, P31 - Levés et cartographie des sols, télédétection, modèle mathématique, cartographie, terre cultivée, utilisation des terres, sol arable, sécurité alimentaire, http://aims.fao.org/aos/agrovoc/c_6498, http://aims.fao.org/aos/agrovoc/c_24199, http://aims.fao.org/aos/agrovoc/c_1344, http://aims.fao.org/aos/agrovoc/c_16212, http://aims.fao.org/aos/agrovoc/c_4182, http://aims.fao.org/aos/agrovoc/c_568, http://aims.fao.org/aos/agrovoc/c_10967, http://aims.fao.org/aos/agrovoc/c_4540, http://aims.fao.org/aos/agrovoc/c_166, |
Online Access: | http://agritrop.cirad.fr/559881/ http://agritrop.cirad.fr/559881/1/document_559881.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|