Combining ability and heterotic orientation of mid-altitude sub-humid tropical maize inbred lines for grain yield and related traits

Information on the combining ability and heterotic pattern of elite inbred lines is essential to maximize their use in hybrid maize development. This study was conducted to determine combining ability and heterotic pattern of locally developed maize inbred lines for grain yield and related traits. Seventeen inbred lines (10 female inbred lines and 7 tester inbred lines) were used to generate 70 single cross hybrids using line by tester crossing scheme. The resulting 70 cross progenies plus two standard checks arranged in 8×9 alpha lattice design replicated twice were planted at three mid-altitude sub-humid testing sites in Ethiopia (Bako, Hawassa and Pawe) in 2011 main cropping season. The combined analysis of variance for yield and other related traits showed highly significant differences among genotypes, crosses, female inbred lines (General combining ability, GCA), tester inbred lines (GCA), line x tester (Specific combining ability, SCA); and the interactions of these source of variation with the environment for all traits studied except for ear aspect (EA) and grain yield (GY) in female inbred lines (GCA), EA in inbred line testers (GCA) and for days to anthesis (AD) in line x tester (SCA) x environment. The significance of both GCA (lines and testers) and SCA of LxT for AD, days to silking (DS), plant height (PH), ear height (EH), EA and GY showed that both additive and non-additive gene actions are important in controlling these traits. Furthermore, the proportion of GCA sum of squares were greater than the SCA sum of squares for AD, DS, PH, EH, and EA indicating the predominance of additive gene actions in controlling these traits. For GY, the ratio of GCA to SCA sum of squares was near to unity indicating both additive and non-additive gene actions were equally important. This study identified inbred lines that can make good cross combination for more than one trait. L1 was found to be good combiner for lower values of AD, DS, PH and EH indicating that this line could be used in improving maize for earliness and short stature. L4 was ideal parent for reducing AD and DS. L3 was found to be good combiner for GY and other related traits. In addition, lines were grouped into heterotic group A, B or AB based on SCA. Based on its per se performance and combining ability, L3 was proposed to be used as a tester in heterotic group B. This study also validated T5 remain to be used as a tester in heterotic group A. Based on the SCA of crosses, heterosis and per se performance of the parents, five best cross combinations were identified for possible release or for use as parents of three way hybrids. Further verification of the stability of the selected hybrids and the new proposed tester across more locations needs to be done.

Saved in:
Bibliographic Details
Main Authors: Keno, T., Regasa, M.W., Habtamu Zeleke
Format: Article biblioteca
Language:English
Published: Academic Journals 2017
Subjects:AGRICULTURAL SCIENCES AND BIOTECHNOLOGY, General Combining Ability, Specific Combining Ability, Heterotic Pattern, ZEA MAYS, INBRED LINES, COMBINING ABILITY,
Online Access:http://hdl.handle.net/10883/19091
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-cimmyt-10883-19091
record_format koha
spelling dig-cimmyt-10883-190912021-02-09T18:24:44Z Combining ability and heterotic orientation of mid-altitude sub-humid tropical maize inbred lines for grain yield and related traits Keno, T. Regasa, M.W. Habtamu Zeleke AGRICULTURAL SCIENCES AND BIOTECHNOLOGY General Combining Ability Specific Combining Ability Heterotic Pattern ZEA MAYS INBRED LINES COMBINING ABILITY Information on the combining ability and heterotic pattern of elite inbred lines is essential to maximize their use in hybrid maize development. This study was conducted to determine combining ability and heterotic pattern of locally developed maize inbred lines for grain yield and related traits. Seventeen inbred lines (10 female inbred lines and 7 tester inbred lines) were used to generate 70 single cross hybrids using line by tester crossing scheme. The resulting 70 cross progenies plus two standard checks arranged in 8×9 alpha lattice design replicated twice were planted at three mid-altitude sub-humid testing sites in Ethiopia (Bako, Hawassa and Pawe) in 2011 main cropping season. The combined analysis of variance for yield and other related traits showed highly significant differences among genotypes, crosses, female inbred lines (General combining ability, GCA), tester inbred lines (GCA), line x tester (Specific combining ability, SCA); and the interactions of these source of variation with the environment for all traits studied except for ear aspect (EA) and grain yield (GY) in female inbred lines (GCA), EA in inbred line testers (GCA) and for days to anthesis (AD) in line x tester (SCA) x environment. The significance of both GCA (lines and testers) and SCA of LxT for AD, days to silking (DS), plant height (PH), ear height (EH), EA and GY showed that both additive and non-additive gene actions are important in controlling these traits. Furthermore, the proportion of GCA sum of squares were greater than the SCA sum of squares for AD, DS, PH, EH, and EA indicating the predominance of additive gene actions in controlling these traits. For GY, the ratio of GCA to SCA sum of squares was near to unity indicating both additive and non-additive gene actions were equally important. This study identified inbred lines that can make good cross combination for more than one trait. L1 was found to be good combiner for lower values of AD, DS, PH and EH indicating that this line could be used in improving maize for earliness and short stature. L4 was ideal parent for reducing AD and DS. L3 was found to be good combiner for GY and other related traits. In addition, lines were grouped into heterotic group A, B or AB based on SCA. Based on its per se performance and combining ability, L3 was proposed to be used as a tester in heterotic group B. This study also validated T5 remain to be used as a tester in heterotic group A. Based on the SCA of crosses, heterosis and per se performance of the parents, five best cross combinations were identified for possible release or for use as parents of three way hybrids. Further verification of the stability of the selected hybrids and the new proposed tester across more locations needs to be done. 229-239 2017-12-15T20:56:12Z 2017-12-15T20:56:12Z 2017 Article http://hdl.handle.net/10883/19091 10.5897/AJPS2016.1502 English CIMMYT manages Intellectual Assets as International Public Goods. The user is free to download, print, store and share this work. In case you want to translate or create any other derivative work and share or distribute such translation/derivative work, please contact CIMMYT-Knowledge-Center@cgiar.org indicating the work you want to use and the kind of use you intend; CIMMYT will contact you with the suitable license for that purpose. Open Access PDF ETHIOPIA BAK0O HAWASSA PAWE Nairobi, Kenya Academic Journals 6 11 African Journal of Plant Science
institution CIMMYT
collection DSpace
country México
countrycode MX
component Bibliográfico
access En linea
databasecode dig-cimmyt
tag biblioteca
region America del Norte
libraryname CIMMYT Library
language English
topic AGRICULTURAL SCIENCES AND BIOTECHNOLOGY
General Combining Ability
Specific Combining Ability
Heterotic Pattern
ZEA MAYS
INBRED LINES
COMBINING ABILITY
AGRICULTURAL SCIENCES AND BIOTECHNOLOGY
General Combining Ability
Specific Combining Ability
Heterotic Pattern
ZEA MAYS
INBRED LINES
COMBINING ABILITY
spellingShingle AGRICULTURAL SCIENCES AND BIOTECHNOLOGY
General Combining Ability
Specific Combining Ability
Heterotic Pattern
ZEA MAYS
INBRED LINES
COMBINING ABILITY
AGRICULTURAL SCIENCES AND BIOTECHNOLOGY
General Combining Ability
Specific Combining Ability
Heterotic Pattern
ZEA MAYS
INBRED LINES
COMBINING ABILITY
Keno, T.
Regasa, M.W.
Habtamu Zeleke
Combining ability and heterotic orientation of mid-altitude sub-humid tropical maize inbred lines for grain yield and related traits
description Information on the combining ability and heterotic pattern of elite inbred lines is essential to maximize their use in hybrid maize development. This study was conducted to determine combining ability and heterotic pattern of locally developed maize inbred lines for grain yield and related traits. Seventeen inbred lines (10 female inbred lines and 7 tester inbred lines) were used to generate 70 single cross hybrids using line by tester crossing scheme. The resulting 70 cross progenies plus two standard checks arranged in 8×9 alpha lattice design replicated twice were planted at three mid-altitude sub-humid testing sites in Ethiopia (Bako, Hawassa and Pawe) in 2011 main cropping season. The combined analysis of variance for yield and other related traits showed highly significant differences among genotypes, crosses, female inbred lines (General combining ability, GCA), tester inbred lines (GCA), line x tester (Specific combining ability, SCA); and the interactions of these source of variation with the environment for all traits studied except for ear aspect (EA) and grain yield (GY) in female inbred lines (GCA), EA in inbred line testers (GCA) and for days to anthesis (AD) in line x tester (SCA) x environment. The significance of both GCA (lines and testers) and SCA of LxT for AD, days to silking (DS), plant height (PH), ear height (EH), EA and GY showed that both additive and non-additive gene actions are important in controlling these traits. Furthermore, the proportion of GCA sum of squares were greater than the SCA sum of squares for AD, DS, PH, EH, and EA indicating the predominance of additive gene actions in controlling these traits. For GY, the ratio of GCA to SCA sum of squares was near to unity indicating both additive and non-additive gene actions were equally important. This study identified inbred lines that can make good cross combination for more than one trait. L1 was found to be good combiner for lower values of AD, DS, PH and EH indicating that this line could be used in improving maize for earliness and short stature. L4 was ideal parent for reducing AD and DS. L3 was found to be good combiner for GY and other related traits. In addition, lines were grouped into heterotic group A, B or AB based on SCA. Based on its per se performance and combining ability, L3 was proposed to be used as a tester in heterotic group B. This study also validated T5 remain to be used as a tester in heterotic group A. Based on the SCA of crosses, heterosis and per se performance of the parents, five best cross combinations were identified for possible release or for use as parents of three way hybrids. Further verification of the stability of the selected hybrids and the new proposed tester across more locations needs to be done.
format Article
topic_facet AGRICULTURAL SCIENCES AND BIOTECHNOLOGY
General Combining Ability
Specific Combining Ability
Heterotic Pattern
ZEA MAYS
INBRED LINES
COMBINING ABILITY
author Keno, T.
Regasa, M.W.
Habtamu Zeleke
author_facet Keno, T.
Regasa, M.W.
Habtamu Zeleke
author_sort Keno, T.
title Combining ability and heterotic orientation of mid-altitude sub-humid tropical maize inbred lines for grain yield and related traits
title_short Combining ability and heterotic orientation of mid-altitude sub-humid tropical maize inbred lines for grain yield and related traits
title_full Combining ability and heterotic orientation of mid-altitude sub-humid tropical maize inbred lines for grain yield and related traits
title_fullStr Combining ability and heterotic orientation of mid-altitude sub-humid tropical maize inbred lines for grain yield and related traits
title_full_unstemmed Combining ability and heterotic orientation of mid-altitude sub-humid tropical maize inbred lines for grain yield and related traits
title_sort combining ability and heterotic orientation of mid-altitude sub-humid tropical maize inbred lines for grain yield and related traits
publisher Academic Journals
publishDate 2017
url http://hdl.handle.net/10883/19091
work_keys_str_mv AT kenot combiningabilityandheteroticorientationofmidaltitudesubhumidtropicalmaizeinbredlinesforgrainyieldandrelatedtraits
AT regasamw combiningabilityandheteroticorientationofmidaltitudesubhumidtropicalmaizeinbredlinesforgrainyieldandrelatedtraits
AT habtamuzeleke combiningabilityandheteroticorientationofmidaltitudesubhumidtropicalmaizeinbredlinesforgrainyieldandrelatedtraits
_version_ 1756086690312617984