Mecanismos de promoción de crecimiento de las PGPB

La tendencia hacia cambios en los regímenes hídricos, alteraciones en la estabilidad y composición de los suelos y, en general, el cambio climático han generado efectos importantes en la productividad de los sistemas agrícolas, lo que ha requerido un aumento en el uso de agroquímicos de síntesis para lograr las metas y los estándares de producción (Tilman et al., 2002). De esta manera, pareciera que la premisa en el sector agrícola es producir más para satisfacer la demanda, sin importar las consecuencias del método que se emplee. La mayoría de los métodos disponibles para el manejo y control de los cultivos se basa en el mejoramiento de las propiedades fisicoquímicas del suelo, dejando los factores biológicos como un tema de menor importancia (Food and Agriculture Organization of the United Nations [fao], 2002). Sin embargo, el conocimiento de los factores biológicos del suelo se ha desarrollado por siglos, desde Teofrasto (372-287 a. C.), quien enunció la importancia de mezclar diferentes suelos para mejorar su riqueza, hasta la actualidad, cuando se conoce el uso de bioinsumos como una alternativa para una agricultura sostenible (Prasad et al., 2019). Sin embargo, los principios de la biología del suelo relacionada con la promoción del crecimiento de la planta solo se conocen desde un siglo atrás, cuando Hellriegel y Wilfarth iniciaron investigaciones sobre la fijación biológica de nitrógeno (N) atmosférico, y cuando Lorentz Hiltner, en 1904, descubrió que la capa de suelo inmediatamente aledaña a las raíces de las plantas es más rica biológicamente que el suelo que no tiene influencia radicular (Bhattacharyya & Jha, 2012).

Saved in:
Bibliographic Details
Main Authors: Posada Uribe, Luisa Fernanda, Moreno Galván, Andrés Eduardo, Santos Torres, Marilyn Tatiana, Estrada Bonilla, Germán Andrés
Format: book part biblioteca
Language:spa
Published: Corporación colombiana de investigación agropecuaria - AGROSAVIA 2021-12-22
Subjects:Propagación de plantas - F02, Promoción de la inversión, Crecimiento de planta, Propiedades físico - químicas suelo, Solubilización, Transversal, http://aims.fao.org/aos/agrovoc/c_28900, http://aims.fao.org/aos/agrovoc/c_08842b17, http://aims.fao.org/aos/agrovoc/c_7182, http://aims.fao.org/aos/agrovoc/c_7234,
Online Access:http://hdl.handle.net/20.500.12324/36979
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-bac-20.500.12324-36979
record_format koha
institution AGROSAVIA
collection DSpace
country Colombia
countrycode CO
component Bibliográfico
access En linea
databasecode dig-bac
tag biblioteca
region America del Sur
libraryname Biblioteca Agropecuaria de Colombia
language spa
topic Propagación de plantas - F02
Promoción de la inversión
Crecimiento de planta
Propiedades físico - químicas suelo
Solubilización
Transversal
http://aims.fao.org/aos/agrovoc/c_28900
http://aims.fao.org/aos/agrovoc/c_08842b17
http://aims.fao.org/aos/agrovoc/c_7182
http://aims.fao.org/aos/agrovoc/c_7234
Propagación de plantas - F02
Promoción de la inversión
Crecimiento de planta
Propiedades físico - químicas suelo
Solubilización
Transversal
http://aims.fao.org/aos/agrovoc/c_28900
http://aims.fao.org/aos/agrovoc/c_08842b17
http://aims.fao.org/aos/agrovoc/c_7182
http://aims.fao.org/aos/agrovoc/c_7234
spellingShingle Propagación de plantas - F02
Promoción de la inversión
Crecimiento de planta
Propiedades físico - químicas suelo
Solubilización
Transversal
http://aims.fao.org/aos/agrovoc/c_28900
http://aims.fao.org/aos/agrovoc/c_08842b17
http://aims.fao.org/aos/agrovoc/c_7182
http://aims.fao.org/aos/agrovoc/c_7234
Propagación de plantas - F02
Promoción de la inversión
Crecimiento de planta
Propiedades físico - químicas suelo
Solubilización
Transversal
http://aims.fao.org/aos/agrovoc/c_28900
http://aims.fao.org/aos/agrovoc/c_08842b17
http://aims.fao.org/aos/agrovoc/c_7182
http://aims.fao.org/aos/agrovoc/c_7234
Posada Uribe, Luisa Fernanda
Moreno Galván, Andrés Eduardo
Santos Torres, Marilyn Tatiana
Estrada Bonilla, Germán Andrés
Mecanismos de promoción de crecimiento de las PGPB
description La tendencia hacia cambios en los regímenes hídricos, alteraciones en la estabilidad y composición de los suelos y, en general, el cambio climático han generado efectos importantes en la productividad de los sistemas agrícolas, lo que ha requerido un aumento en el uso de agroquímicos de síntesis para lograr las metas y los estándares de producción (Tilman et al., 2002). De esta manera, pareciera que la premisa en el sector agrícola es producir más para satisfacer la demanda, sin importar las consecuencias del método que se emplee. La mayoría de los métodos disponibles para el manejo y control de los cultivos se basa en el mejoramiento de las propiedades fisicoquímicas del suelo, dejando los factores biológicos como un tema de menor importancia (Food and Agriculture Organization of the United Nations [fao], 2002). Sin embargo, el conocimiento de los factores biológicos del suelo se ha desarrollado por siglos, desde Teofrasto (372-287 a. C.), quien enunció la importancia de mezclar diferentes suelos para mejorar su riqueza, hasta la actualidad, cuando se conoce el uso de bioinsumos como una alternativa para una agricultura sostenible (Prasad et al., 2019). Sin embargo, los principios de la biología del suelo relacionada con la promoción del crecimiento de la planta solo se conocen desde un siglo atrás, cuando Hellriegel y Wilfarth iniciaron investigaciones sobre la fijación biológica de nitrógeno (N) atmosférico, y cuando Lorentz Hiltner, en 1904, descubrió que la capa de suelo inmediatamente aledaña a las raíces de las plantas es más rica biológicamente que el suelo que no tiene influencia radicular (Bhattacharyya & Jha, 2012).
format book part
topic_facet Propagación de plantas - F02
Promoción de la inversión
Crecimiento de planta
Propiedades físico - químicas suelo
Solubilización
Transversal
http://aims.fao.org/aos/agrovoc/c_28900
http://aims.fao.org/aos/agrovoc/c_08842b17
http://aims.fao.org/aos/agrovoc/c_7182
http://aims.fao.org/aos/agrovoc/c_7234
author Posada Uribe, Luisa Fernanda
Moreno Galván, Andrés Eduardo
Santos Torres, Marilyn Tatiana
Estrada Bonilla, Germán Andrés
author_facet Posada Uribe, Luisa Fernanda
Moreno Galván, Andrés Eduardo
Santos Torres, Marilyn Tatiana
Estrada Bonilla, Germán Andrés
author_sort Posada Uribe, Luisa Fernanda
title Mecanismos de promoción de crecimiento de las PGPB
title_short Mecanismos de promoción de crecimiento de las PGPB
title_full Mecanismos de promoción de crecimiento de las PGPB
title_fullStr Mecanismos de promoción de crecimiento de las PGPB
title_full_unstemmed Mecanismos de promoción de crecimiento de las PGPB
title_sort mecanismos de promoción de crecimiento de las pgpb
publisher Corporación colombiana de investigación agropecuaria - AGROSAVIA
publishDate 2021-12-22
url http://hdl.handle.net/20.500.12324/36979
work_keys_str_mv AT posadauribeluisafernanda mecanismosdepromociondecrecimientodelaspgpb
AT morenogalvanandreseduardo mecanismosdepromociondecrecimientodelaspgpb
AT santostorresmarilyntatiana mecanismosdepromociondecrecimientodelaspgpb
AT estradabonillagermanandres mecanismosdepromociondecrecimientodelaspgpb
_version_ 1762930630070370304
spelling dig-bac-20.500.12324-369792023-02-23T21:18:45Z Mecanismos de promoción de crecimiento de las PGPB Posada Uribe, Luisa Fernanda Moreno Galván, Andrés Eduardo Santos Torres, Marilyn Tatiana Estrada Bonilla, Germán Andrés Propagación de plantas - F02 Promoción de la inversión Crecimiento de planta Propiedades físico - químicas suelo Solubilización Transversal http://aims.fao.org/aos/agrovoc/c_28900 http://aims.fao.org/aos/agrovoc/c_08842b17 http://aims.fao.org/aos/agrovoc/c_7182 http://aims.fao.org/aos/agrovoc/c_7234 La tendencia hacia cambios en los regímenes hídricos, alteraciones en la estabilidad y composición de los suelos y, en general, el cambio climático han generado efectos importantes en la productividad de los sistemas agrícolas, lo que ha requerido un aumento en el uso de agroquímicos de síntesis para lograr las metas y los estándares de producción (Tilman et al., 2002). De esta manera, pareciera que la premisa en el sector agrícola es producir más para satisfacer la demanda, sin importar las consecuencias del método que se emplee. La mayoría de los métodos disponibles para el manejo y control de los cultivos se basa en el mejoramiento de las propiedades fisicoquímicas del suelo, dejando los factores biológicos como un tema de menor importancia (Food and Agriculture Organization of the United Nations [fao], 2002). Sin embargo, el conocimiento de los factores biológicos del suelo se ha desarrollado por siglos, desde Teofrasto (372-287 a. C.), quien enunció la importancia de mezclar diferentes suelos para mejorar su riqueza, hasta la actualidad, cuando se conoce el uso de bioinsumos como una alternativa para una agricultura sostenible (Prasad et al., 2019). Sin embargo, los principios de la biología del suelo relacionada con la promoción del crecimiento de la planta solo se conocen desde un siglo atrás, cuando Hellriegel y Wilfarth iniciaron investigaciones sobre la fijación biológica de nitrógeno (N) atmosférico, y cuando Lorentz Hiltner, en 1904, descubrió que la capa de suelo inmediatamente aledaña a las raíces de las plantas es más rica biológicamente que el suelo que no tiene influencia radicular (Bhattacharyya & Jha, 2012). 2022-01-06T12:53:11Z 2022-01-06T12:53:11Z 2021-12-22 2021 book part Capítulo http://purl.org/coar/resource_type/c_3248 info:eu-repo/semantics/bookPart https://purl.org/redcol/resource_type/CAP_LIB http://purl.org/coar/version/c_970fb48d4fbd8a85 http://hdl.handle.net/20.500.12324/36979 reponame:Biblioteca Digital Agropecuaria de Colombia repourl:https://repository.agrosavia.co instname:Corporación colombiana de investigación agropecuaria AGROSAVIA spa 78 105 Ahmad, F., Ahmad, I., & Khan, M. S. (2005). Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turkish Journal of Biology, 29(1), 29-34. https:// dergipark.org.tr/tr/download/article-file/121463 Antoun, H., & Prévost, D. (2006). Ecology of plant growth promoting rhizobacteria. En Z. A. Siddiqui (ed.), pgpr: Biocontrol and biofertilization (pp. 1-38). Springer. https://doi.org/10.1007/1- 4020-4152-7_1 Archana, D. S., Nandish, M. S., Savalagi, V. P., & Alagawadi, A. R. (2012). Screening of potassium solubilizing bacteria (ksb) for plant growth promotional activity. Bioinfolet, 9(4), 627-630. https://www.researchgate.net/publication/284757144_ Screening_of_potassium_solubilizing_bacteria_KSB_for_plant_ growth_promotional_activity Arteca, R. N. (1996). Historical aspects and fundamental terms and concepts. En R. N. Arteca (ed.), Plant growth substances: Principles and applications (pp. 1-27). Springer. https://doi.org/10.1007/978- 1-4757-2451-6_1 Backer, R., Rokem, J. S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S., & Smith, D. L. (2018). Plant growthpromoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science, 9, artículo 1473. https://doi. org/10.3389/fpls.2018.01473 Bais, H. P., Fall, R., & Vivanco, J. M. (2004). Biocontrol of Bacillus subtilis against infection of arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiology, 134(1), 307-319. https://doi. org/10.1104/pp.103.028712 Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57(1), 233- 266. https://doi.org/10.1146/annurev.arplant.57.032905.105159 Barea, J. M., Azcón, R., & Azcón-Aguilar, C. (2005). Interactions between mycorrhizal fungi and bacteria to improve plant nutrient cycling and soil structure. En A. Varma, & F. Buscot (eds.), Microorganisms in soils: Roles in genesis and functions (pp. 195-212). Springer. Basak, B., & Biswas, D. (2012). Modification of waste mica for alternative source of potassium: Evaluation of potassium release in soil from waste mica treated with potassium solubilizing bacteria (ksb). Lambert Academic Publishing. Bashan, Y., & de-Bashan, L. E. (2005). Bacteria/plant growthpromotion. En D. Hillel (ed.), Encyclopedia of soils in the environment (vol. 1, pp. 103-115). Elsevier. Bashan, Y., & de-Bashan, L. E. (2010). Chapter two - How the plant growth-promoting bacterium Azospirillum promotes plant Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255, 571-586. https://doi. org/10.1023/A:1026037216893 Viscardi, S., Ventorino, V., Duran, P., Maggio, A., De Pascale, S., Mora, M. L., & Pepe, O. (2016). Assessment of plant growth promoting activities and abiotic stress tolerance of Azotobacter chroococcum strains for a potential use in sustainable agriculture. Journal of Soil Science and Plant Nutrition, 16(3), 848-863. http://dx.doi. org/10.4067/S0718-95162016005000060 Vlamakis, H., Chai, Y., Beauregard, P., Losick, R., & Kolter, R. (2013). Sticking together: Building a biofilm the Bacillus subtilis way. Nature Reviews Microbiology, 11(3), 157-168. https://doi. org/10.1038/nrmicro2960 Walters, D., & Heil, M. (2007). Costs and trade-offs associated with induced resistance. Physiological and Molecular Plant Pathology, 71(1-3), 3-17. https://doi.org/10.1016/j.pmpp.2007.09.008 Wang, D.-C., Jiang, C.-H., Zhang, L.-N., Chen, L., Zhang, X.-Y., & Guo, J.-H. (2019). Biofilms positively contribute to Bacillus amyloliquefaciens 54-induced drought tolerance in tomato plants. International Journal of Molecular Sciences, 20(24), 6.271- 6.287. https://doi.org/10.3390/ijms20246271 Zarjani, J. K., Aliasgharzad, N., Oustan, S., Emadi, M., & Ahmadi, A. (2013). Isolation and characterization of potassium solubilizing bacteria in some Iranian soils. Archives of Agronomy and Soil Science, 59(12), 1.713-1.723. https://doi.org/10.1080/03650340.2 012.756977 Zhang, A., Zhao, G., Gao, T., Wang, W., Li, J., Zhang, S., & Zhu, B. (2013). Solubilization of insoluble potassium and phosphate by Paenibacillus kribensis CX-7: A soil microorganism with biological control potential. African Journal of Microbiology Research, 7(1), 41-47. https://doi.org/10.5897/AJMR12.1485 Zhang, N., Yang, D., Wang, D., Miao, Y., Shao, J., Zhou, X., Xu, Z., Li, Q., Feng, H., Li, S., Shen, Q., & Zhang, R. (2015). Whole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudates. bmc Genomics, 16(1), artículo 685. https://doi.org/10.1186/s12864-015-1825-5 Zhang, P., Jin, T., Sahu, S. K., Xu, J., Shi, Q., Liu, H., & Wang, Y. (2019). The distribution of tryptophan-dependent indole-3-acetic acid synthesis pathways in bacteria unraveled by large-scale genomic analysis. Molecules, 24(7), 1-14. https://doi.org/10.3390/ molecules24071411 Zhou, H., Luo, C., Fang, X., Xiang, Y., Wang, X., Zhang, R., & Chen, Z. (2016). Loss of GltB inhibits biofilm formation and biocontrol efficiency of Bacillus subtilis Bs916 by altering the production of γ-Polyglutamate and three lipopeptides. PLoS ONE, 11(5), artículo e0156247. https://doi.org/10.1371/journal.pone.0156247 36976 ; Bacterias promotoras de crecimiento vegetal en sistemas de agricultura sostenible Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ application/pdf application/pdf C.I Tibaitatá Corporación colombiana de investigación agropecuaria - AGROSAVIA Mosquera (Colombia)