Los volátiles microbianos y su potencial en el control biológico de fitopatógenos e insectos

La importancia de los microorganismos en las interacciones entre las comunidades y los ecosistemas es un tema de creciente interés por su posible aplicación en el control de patógenos e insectos en los sistemas agropecuarios. El potencial de los compuestos volátiles orgánicos producidos por los microorganismos (mVOC, por su sigla en inglés) para el control de patógenos hasta ahora se empieza a estudiar y a entender. Sin embargo, se ha visto que los mVOC pueden ser promotores de crecimiento e inductores de defensas. Desde comienzos del siglo xx, además, han sido de gran importancia en el control de insectos, ya que su efecto de atracción sobre insectos plaga se ha utilizado para facilitar la eliminación de estos. Su uso como atrayente, de hecho, se ha enfocado en las moscas de la fruta, pero se ha dejado de lado su estudio para el control de otros insectos de importancia económica. Finalmente, se ha evidenciado que los mVOC pueden ser una fuente importante de repelentes o compuestos insecticidas. No obstante, poco se sabe sobre los mecanismos de acción de los volátiles y existen dificultades técnicas que limitan su aplicación en campo. En este capítulo se resume el estado actual del uso de los mVOC en la agricultura, su potencial para futuros desarrollos y los temas que requieren más investigación.

Saved in:
Bibliographic Details
Main Authors: Clerck, Caroline de, Borrero Echeverry, Felipe
Format: book part biblioteca
Language:spa
Published: ‎‎Corporación colombiana de investigación agropecuaria - AGROSAVIA 2018
Subjects:Recursos hídricos y su ordenación - P10, Atrayentes, Insecticidas, Control biológico, Transversal,
Online Access:http://hdl.handle.net/20.500.12324/34161
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-bac-20.500.12324-34161
record_format koha
institution AGROSAVIA
collection DSpace
country Colombia
countrycode CO
component Bibliográfico
access En linea
databasecode dig-bac
tag biblioteca
region America del Sur
libraryname Biblioteca Agropecuaria de Colombia
language spa
topic Recursos hídricos y su ordenación - P10
Atrayentes
Insecticidas
Control biológico
Transversal
Recursos hídricos y su ordenación - P10
Atrayentes
Insecticidas
Control biológico
Transversal
spellingShingle Recursos hídricos y su ordenación - P10
Atrayentes
Insecticidas
Control biológico
Transversal
Recursos hídricos y su ordenación - P10
Atrayentes
Insecticidas
Control biológico
Transversal
Clerck, Caroline de
Borrero Echeverry, Felipe
Los volátiles microbianos y su potencial en el control biológico de fitopatógenos e insectos
description La importancia de los microorganismos en las interacciones entre las comunidades y los ecosistemas es un tema de creciente interés por su posible aplicación en el control de patógenos e insectos en los sistemas agropecuarios. El potencial de los compuestos volátiles orgánicos producidos por los microorganismos (mVOC, por su sigla en inglés) para el control de patógenos hasta ahora se empieza a estudiar y a entender. Sin embargo, se ha visto que los mVOC pueden ser promotores de crecimiento e inductores de defensas. Desde comienzos del siglo xx, además, han sido de gran importancia en el control de insectos, ya que su efecto de atracción sobre insectos plaga se ha utilizado para facilitar la eliminación de estos. Su uso como atrayente, de hecho, se ha enfocado en las moscas de la fruta, pero se ha dejado de lado su estudio para el control de otros insectos de importancia económica. Finalmente, se ha evidenciado que los mVOC pueden ser una fuente importante de repelentes o compuestos insecticidas. No obstante, poco se sabe sobre los mecanismos de acción de los volátiles y existen dificultades técnicas que limitan su aplicación en campo. En este capítulo se resume el estado actual del uso de los mVOC en la agricultura, su potencial para futuros desarrollos y los temas que requieren más investigación.
format book part
topic_facet Recursos hídricos y su ordenación - P10
Atrayentes
Insecticidas
Control biológico
Transversal
author Clerck, Caroline de
Borrero Echeverry, Felipe
author_facet Clerck, Caroline de
Borrero Echeverry, Felipe
author_sort Clerck, Caroline de
title Los volátiles microbianos y su potencial en el control biológico de fitopatógenos e insectos
title_short Los volátiles microbianos y su potencial en el control biológico de fitopatógenos e insectos
title_full Los volátiles microbianos y su potencial en el control biológico de fitopatógenos e insectos
title_fullStr Los volátiles microbianos y su potencial en el control biológico de fitopatógenos e insectos
title_full_unstemmed Los volátiles microbianos y su potencial en el control biológico de fitopatógenos e insectos
title_sort los volátiles microbianos y su potencial en el control biológico de fitopatógenos e insectos
publisher ‎‎Corporación colombiana de investigación agropecuaria - AGROSAVIA
publishDate 2018
url http://hdl.handle.net/20.500.12324/34161
work_keys_str_mv AT clerckcarolinede losvolatilesmicrobianosysupotencialenelcontrolbiologicodefitopatogenoseinsectos
AT borreroecheverryfelipe losvolatilesmicrobianosysupotencialenelcontrolbiologicodefitopatogenoseinsectos
AT clerckcarolinede microbialvolatilesandtheirpotentialinthebiologicalcontrolofplantpathogensandinsects
AT borreroecheverryfelipe microbialvolatilesandtheirpotentialinthebiologicalcontrolofplantpathogensandinsects
_version_ 1756053905334075392
spelling dig-bac-20.500.12324-341612021-09-08T14:00:51Z Los volátiles microbianos y su potencial en el control biológico de fitopatógenos e insectos Microbial volatiles and their potential in the biological control of plant pathogens and insects Clerck, Caroline de Borrero Echeverry, Felipe Recursos hídricos y su ordenación - P10 Atrayentes Insecticidas Control biológico Transversal La importancia de los microorganismos en las interacciones entre las comunidades y los ecosistemas es un tema de creciente interés por su posible aplicación en el control de patógenos e insectos en los sistemas agropecuarios. El potencial de los compuestos volátiles orgánicos producidos por los microorganismos (mVOC, por su sigla en inglés) para el control de patógenos hasta ahora se empieza a estudiar y a entender. Sin embargo, se ha visto que los mVOC pueden ser promotores de crecimiento e inductores de defensas. Desde comienzos del siglo xx, además, han sido de gran importancia en el control de insectos, ya que su efecto de atracción sobre insectos plaga se ha utilizado para facilitar la eliminación de estos. Su uso como atrayente, de hecho, se ha enfocado en las moscas de la fruta, pero se ha dejado de lado su estudio para el control de otros insectos de importancia económica. Finalmente, se ha evidenciado que los mVOC pueden ser una fuente importante de repelentes o compuestos insecticidas. No obstante, poco se sabe sobre los mecanismos de acción de los volátiles y existen dificultades técnicas que limitan su aplicación en campo. En este capítulo se resume el estado actual del uso de los mVOC en la agricultura, su potencial para futuros desarrollos y los temas que requieren más investigación. 2018-12-05T19:39:56Z 2018-12-05T19:39:56Z 2018 book part Capítulo http://purl.org/coar/resource_type/c_3248 info:eu-repo/semantics/bookPart https://purl.org/redcol/resource_type/CAP_LIB http://purl.org/coar/version/c_970fb48d4fbd8a85 978-958-740-254-4 (e-book) http://hdl.handle.net/20.500.12324/34161 reponame:Biblioteca Digital Agropecuaria de Colombia repourl:https://repository.agrosavia.co instname:Corporación colombiana de investigación agropecuaria AGROSAVIA spa 33519 ; Control biológico de fitopatógenos, insectos y ácaros: Aplicaciones y perspectivas V. 2. 988 1013 Alemany, A., Miranda, M., Alonso, R., & Martín Escorza, C. (2004). Efficacy of C. capitata (Wied.) (Diptera: Tephritidae) female mass trapping. IOBC/WPRS Bulletin, 95, 43-50 Allan, S. A., Bernier, U. R., & Kline, D. L. (2006). Attraction of mosquitoes to volatiles associated with blood. Journal of Vector Ecology, 31(1), 71-78. doi:10.3376/1081- 1710(2006)31[71:aomtva]2.0.co;2. Alpha, C. J., Campos, M., Jacobs-Wagner, C., & Strobel, S. A. (2015). Mycofumigation by the volatile organic compound-producing fungus Muscodor albus induces bacterial cell death through dna damage. Applied and Environmental Microbiology, 81(3), 1147-1156. doi:10.1128/AEM.03294-14. Ann, Y. C. (2012). Rhizobacteria of pepper (Piper nigrum) and their antifungal activities. African Journal of Microbiology Research, 6(19), 4185-4193. doi:0.5897/AJMR12.583. Asari, S., Matzen, S., Petersen, M. A., Bejai, S., & Meijer, J. (2016). Multiple effects of Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inhibition of phytopathogens. FEMS Microbiology Ecology, 92(6), fiw070. doi:10.1093/femsec/fiw070. Bailly, A., & Weisskopf, L. (2012). The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. Plant Signaling & Behavior, 7(1), 79-85. doi:10.4161/psb.7.1.18418. Baker, A. C. (1944). A review of studies on the Mexican fruitfly and related Mexican species. Recuperado de https:// archive.org/details/reviewofstudieso531bake. Baldacchino, F., Cadier, J., Porciani, A., Buatois, B., Dormont, L., & Jay-Robert, P. (2013). Behavioural and electrophysiological responses of females of two species of tabanid to volatiles in urine of different mammals. Medical and Veterinary Entomology, 27(1), 77-85. doi:10.1111/j.1365-2915.2012.01022.x. Baldwin, I. T. (2010). Plant volatiles. Current Biology: CB, 20(9), R392-R397. doi:10.1016/j.cub.2010.02.052. Barrozo, R. B., & Lazzari, C. R. (2006). Orientation response of haematophagous bugs to CO2: the effect of the temporal structure of the stimulus. Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology, 192(8), 827-831. doi:10.1007/s00359-006- 0120-y. Bateman, M. A., & Morton, T. C. (1981). The importance of ammonia in proteinaceous attractants for fruit flies (Family: Tephritidae). Australian Journal of Agricultural Research, 32(6), 883. doi:10.1071/ar9810883. Becher, P. G., Bengtsson, M., Hansson, B. S., & Witzgall, P. (2010). Flying the fly: Long-range flight behavior of Drosophila melanogaster to attractive odors. Journal of Chemical Ecology, 36(6), 599-607. doi:10.1007/s10886- 010-9794-2. Becher, P. G., Flick, G., Rozpędowska, E., Schmidt, A., Hagman, A., Lebreton, S., ... Thompson, K. (2012). Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Functional Ecology, 26(4), 822-828. doi:10.1111/j.1365- 2435.2012.02006.x. Berrada, I., Benkhemmar, O., Swings, J., Bendaou, N., & Amar, M. (2012). Selection of halophilic bacteria for biological control of tomato gray mould caused by Botrytis cinerea. Phytopathologia Mediterranea, 51(3), 625-630. doi:10.14601/Phytopathol_Mediterr-10627 Birkett, M. A., Agelopoulos, N., Jensen, K. M. V., Jespersen, J. B., Pickett, J. A., Prijs, H. J., ... Woodcock, C. M. (2004). The role of volatile semiochemicals in mediating host location and selection by nuisance and disease-transmitting cattle flies. Medical and Veterinary Entomology, 18(4), 313-322. doi:10.1111/j.0269-283X.2004.00528.x. Bitas, V., Kim, H. S., Bennett, J. W., & Kang, S. (2013). Sniffing on microbes: Diverse roles of microbial volatile organic compounds in plant health. Molecular PlantMicrobe Interactions Journal, 26(8), 835-843. doi:10.1094/ mpmi-10-12-0249-cr. Blom, D., Fabbri, C., Eberl, L., & Weisskopf, L. (2011). Volatile-mediated killing of Arabidopsis thaliana by bacteria is mainly due to hydrogen cyanide. Applied and Environmental Microbiology, 77(3), 1000-1008. doi:10.1128/AEM.01968-10. Boyce, A., & Bartlett, B. R. (1941). Lures for the walnut husk fly. Journal of Economic Entomology, 34(2), 318-318. doi:10.1093/jee/34.2.318. Buttery, R. G., Ling, L. C., Teranishi, R., & Mon, T. R. (1983). Insect attractants: volatiles of hydrolyzed protein insect baits. Journal of Agricultural and Food Chemistry, 31(4), 689-692. doi:10.1021/jf00118a003. Castrejón-Gómez, V. R., Aluja, M., Arzuffi, R., & Villa, P. (2004). Two low-cost food attractants for capturing Toxotrypana curvicauda (Diptera: Tephritidae) in the field. Journal of Economic Entomology, 97(2), 310-315. doi:10.1603/0022-0493-97.2.310. Cha, D. H., Landolt, P. J., & Adams, T. B. (2017). Effect of chemical ratios of a microbial-based feeding attractant on trap catch of Drosophila suzukii (Diptera: Drosophilidae). Environmental Entomology, 46(4), 907-915. doi:10.1093/ ee/nvx079. Chaurasia, B., Pandey, A., Palni, L. M., Trivedi, P., Kumar, B., & Colvin, N. (2005). Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiological Research, 160(1), 75-81. doi:10.1016/j. micres.2004.09.013. Chitarra, G. S., Abee, T., Rombouts, F. M., Posthumus, M. A., & Dijksterhuis, J. (2004). Germination of Penicillium paneum conidia is regulated by 1-octen-3-ol, a volatile selfinhibitor. Applied and Environmental Microbiology, 70(5), 2823-2829. doi:10.1128/AEM.70.5.2823-2829.2004. Christenson, L. D. (1963). The male annihilation technique in the control of fruit flies. En A. H. Stanley (Ed.), New approaches to pest control and eradication (pp. 31- 35). Beltsville, EE. UU.: American Chemical Society Publications. Christenson, L. D., & Foote, R. H. (1960). Biology of fruit flies. Annual Review of Entomology, 5, 171-192. doi:10.1146/annurev.en.05.010160.001131. Clavijo McCormick, A., Unsicker, S. B., & Gershenzon, J. (2012). The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends in Plant Science, 17(5), 303-310. doi:10.1016/j.tplants.2012.03.012. Cook, S. M., Khan, Z. R., & Pickett, J. A. (2007). The use of push-pull strategies in integrated pest management. Annual Review of Entomology, 52, 375-400. Cortés-Barco, A. M., Goodwin, P. H., & Hsiang, T. (2010). Comparison of induced resistance activated by benzothiadiazole, (2R,3R)-butanediol and an isoparaffin mixture against anthracnose of Nicotiana benthamiana. Plant Pathology, 59(4), 643-653. doi:10.1111/j.1365- 3059.2010.02283.x. Cortés-Barco, A. M., Hsiang, T., & Goodwin, P. H. (2010). Induced systemic resistance against three foliar diseases of Agrostis stolonifera by (2R,3R)-butanediol or an isoparaffin mixture. Annals of Applied Biology, 157(2), 179-189. doi:10.1111/j.1744-7348.2010.00417.x. Daisy, B. H., Strobel, G. A., Castillo, U., Ezra, D., Sears, J., Weaver, D. K., & Runyon, J. B. (2002). Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology, 148(Pt 11), 3737-3741. Davis, T. S., & Landolt, P. J. (2013). A survey of insect assemblages responding to volatiles from a ubiquitous fungus in an agricultural landscape. Journal of Chemical Ecology, 39(7), 860-868. doi:10.1007/s10886-013- 0278-z. Dean, R. (1941). Attraction of Rhagoletis pomonella adults to protein Baits. Journal of Economic Entomology, 34, 123- 123. doi:10.1093/jee/34.1.123a. Dekker, T., Geier, M., & Carde, R. T. (2005). Carbon dioxide instantly sensitizes female yellow fever mosquitoes to human skin odours. The Journal of Experimental Biology, 208(Pt 15), 2963-2972. doi:10.1242/jeb.01736. Dicke, M., Van Poecke, R. M. P., & De Boer, J. G. (2003). Inducible indirect defence of plants: from mechanisms to ecological functions. Basic and Applied Ecology, 4(1), 27- 42. doi:10.1078/1439-1791-00131. Dong, F., Fu, X., Watanabe, N., Su, X., & Yang, Z. (2016). Recent advances in the emission and functions of plant vegetative volatiles. Molecules (Basel, Switzerland), 21(2), 124. doi:10.3390/molecules21020124. Dowell, R. V., Siddiqui, I. A., Meyer, F., & Spaugy, E. L. (1999). Early results suggest sterile flies may protect S. California from medfly. California Agriculture, 53(2), 28- 32. doi:10.3733/ca.v053n02p28. Dudareva, N., Klempien, A., Muhlemann, J. K., & Kaplan, I. (2013). Biosynthesis, function and metabolic engineering of plant volatile organic compounds. The New Phytologist, 198(1), 16-32. doi:10.1111/nph.12145. Effmert, U., Kalderas, J., Warnke, R., & Piechulla, B. (2012). Volatile mediated interactions between bacteria and fungi in the soil. Journal of Chemical Ecology, 38(6), 665-703. doi:10.1007/s10886-012-0135-5. El-Sayed, A. M., Heppelthwaite, V. J., Manning, L. M., Gibb, A. R., & Suckling, D. M. (2005). Volatile constituents of fermented sugar baits and their attraction to lepidopteran species. Journal of Agricultural and Food Chemistry, 53(4), 953-958. doi:10.1021/jf048521j. Epsky, N. D., Espinoza, H. R., Kendra, P. E., Abernathy, R., Midgarden, D., & Heath, R. R. (2010). Effective sampling range of a synthetic protein-based attractant for Ceratitis capitata (Diptera: Tephritidae). Journal of Economic Entomology, 103(5), 1886-1895. doi:10.1603/EC09286. Epsky, N. D., Heath, R. R., Guzmán, A., & Meyer, W. L. (1995). Visual cue and chemical cue interactions in a dry trap with food–based synthetic attractant for Ceratitis capitata and Anastrepha ludens (Diptera: Tephritidae). Environmental Entomology, 24(6), 1387- 1395. doi:10.1093/ee/24.6.1387. Eyer, J. R., & Medler, J. T. (1940). Attractiveness to Codling Moth of substances related to those elaborated by heterofermentative bacteria in baits. Journal of Economic Entomology, 33(6), 933-940. doi:10.1093/jee/33.6.933 Eyer, J. R., Medler, J. T., & Linton, H. L. (1937). Analysis of attrahent factors in fermenting baits used for Codling Moth. Journal of Economic Entomology, 30(5), 750-756. doi:10.1093/jee/30.5.750. Ezquer, I., Li, J., Ovecka, M., Baroja-Fernandez, E., Munoz, F. J., Montero, M., ... Pozueta-Romero, J. (2010). Microbial volatile emissions promote accumulation of exceptionally high levels of starch in leaves in mono- and dicotyledonous plants. Plant and Cell Physiology, 51(10), 1674-1693. doi:10.1093/pcp/pcq126 Farag, M. A., Zhang, H., & Ryu, C. M. (2013). Dynamic chemical communication between plants and bacteria through airborne signals: Induced resistance by bacterial volatiles. Journal of Chemical Ecology, 39(7), 1007-1018. doi:10.1007/s10886-013-0317-9. Fernando, W. G. D., Ramarathnam, R., Krishnamoorthy, A. S., & Savchuk, S. C. (2005). Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biology and Biochemistry, 37(5), 955-964. doi:10.1016/j.soilbio.2004.10.021. Fiddaman, P. J., & Rossall, S. (1994). Effect of substrate on the production of antifungal volatiles from Bacillus subtilis. Journal of Applied Microbiology, 76(4), 395-405. doi:10.1111/j.1365-2672.1994.tb01646.x. Fiedler, K., Schutz, E., & Geh, S. (2001). Detection of microbial volatile organic compounds (mVOC) produced by moulds on various materials. International Journal of Hygiene and Environmental Health, 204(2-3), 111-121. doi:10.1078/1438-4639-00094. Fiers, M., Lognay, G., Fauconnier, M.-L., & Jijakli, M. H. (2013). Volatile compound-mediated interactions between barley and pathogenic fungi in the soil. PLoS One, 8(6), e66805. doi:10.1371/journal.pone.0066805. Foltan, P., & Puza, V. (2009). To complete their life cycle, pathogenic nematode–bacteria complexes deter scavengers from feeding on their host cadaver. Behavioural Processes, 80(1), 76-79. doi:10.1016/j.beproc.2008.09.012. Frick, K. E. (1952). Determining emergence of the cherry fruit fly with ammonium carbonate bait traps. Journal of Economic Entomology, 45(2), 262-263. doi:10.1093/ jee/45.2.262. Frost, S. W. (1937). Tests on baits for Oriental Fruit Moths, 1936. Journal of Economic Entomology, 30(5), 693-695. doi:10.1093/jee/30.5.693. Garbeva, P., Hordijk, C., Gerards, S., & De Boer, W. (2014). Volatile-mediated interactions between phylogenetically different soil bacteria. Frontiers in Microbiology, 5, 289. doi:10.3389/fmicb.2014.00289. Goates, B. J., & Mercier, J. (2009). Effect of biofumigation with volatiles from Muscodor albus on the viability of Tilletia spp. teliospores. Canadian Journal of Microbiology, 55(2), 203-206. doi:10.1139/w08-104. Gómez-Clemente, F. (1929). Experiencias de lucha contra la Ceratitis capitata con cazamoscas de vidrio. Boletín de Patología Vegetal y Entomología Agrícola, 4, 21-38. Gow, P. L. (1954). Proteinaceous bait for the oriental fruit fly. Journal of Economic Entomology, 47(1), 153-160. doi:10.1093/jee/47.1.153. Green, N., Beroza, M., & Hall, S. A. (1960). Recent developments in chemical attractants for insects. Advances in Pest Control Research, 3, 129-179. Gutiérrez-Luna, F. M., López-Bucio, J., AltamiranoHernández, J., Valencia-Cantero, E., De la Cruz, H. R., & Macías-Rodríguez, L. (2010). Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 51(1), 75-83. doi:10.1007/s13199- 010-0066-2. Ha, A., Larson, K., Harvey, S., Fisher, B., & Malcolm, B. (2010). Benefit-cost analysis of options for managing Queensland fruit fly in Victoria. Melbourne, EE. UU.: Department of Primary Industries. Hamby, K. A., & Becher, P. G. (2016). Current knowledge of interactions between Drosophila suzukii and microbes, and their potential utility for pest management. Journal of Pest Science, 89(3), 621-630. doi:10.1007/s10340-016- 0768-1. Harman, G. E. (2011). Trichoderma—not just for biocontrol anymore. Phytoparasitica, 39(2), 103-108. doi:10.1007/ s12600-011-0151-y. Heath, R. R., Epsky, N. D., Dueben, B. D., Rizzo, J., & Jeronimo, F. (1997). Adding methyl-substituted ammonia derivatives to a food-based synthetic attractant on capture of the Mediterranean and Mexican fruit flies (Diptera: Tephritidae). Journal of Economic Entomology, 90(6), 1584-1589. doi:10.1093/jee/90.6.1584. Heath, R. R., Epsky, N. D., Midgarden, D., & Katsoyannos, B. I. (1995). Efficacy of 1,4-diaminobutane (putrescine) in a food-based synthetic attractant for capture of Mediterranean and Mexican fruit flies (Diptera: Tephritidae). Journal of Economic Entomology, 97(3), 1126-1131. doi:10.1603/0022- 0493(2004)097[1126:EODPIA]2.0.CO;2. Hendrichs, J., & Hendrichs, M. A. (1990). Mediterranean fruit fly (Diptera: Tephritidae) in nature: Location and diel pattern of feeding and other activities on fruiting and nonfruiting hosts and nonhosts. Annals of the Entomological Society of America, 83(3), 632-641. doi:10.1093/aesa/83.3.632. Heuskin, S., Lorge, S., Godin, B., Leroy, P., Frere, I., Verheggen, F. J., ... Lognay, G. (2011). Optimisation of a semiochemical slow-release alginate formulation attractive towards Aphidius ervi Haliday parasitoids. Pest Management Science, 68(1), 127-136. doi:10.1002/ ps.2234. Hodson, A. C. (1943). Lures attractive to the apple maggot. Journal of Economic Entomology, 36(4), 545-548. doi:10.1093/jee/36.4.545. Honda, H., Ishiwatari, T., & Matsumoto, Y. (1988). Fungal volatiles as oviposition attractants for the yellow peach moth, Conogethes punctiferalis (Guenée) (Lepidoptera: Pyralidae). Journal of Insect Physiology, 34(3), 205-211. doi:10.1016/0022-1910(88)90051-0. Huang, C. J., Tsay, J. F., Chang, S. Y., Yang, H. P., Wu, W. S., & Chen, C. Y. (2012). Dimethyl disulfide is an induced systemic resistance elicitor produced by Bacillus cereus C1L. Pest Management Science, 68(9), 1306-1310. doi:10.1002/ps.3301. Hung, R., Lee, S., & Bennett, J. W. (2013).Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecology, 6(1), 19-26. doi:10.1016/j.funeco.2012.09.005. Hussain, A., Tian, M.-Y., He, Y.-R., Bland, J. M., & Gu, W.-X. (2010). Behavioral and electrophysiological responses of Coptotermes formosanus Shiraki towards entomopathogenic fungal volatiles. Biological Control, 55(3), 166-173. doi:10.1016/j.biocontrol.2010.08.009. Hutchings, M. L., Alpha-Cobb, C. J., Hiller, D. A., Berro, J., & Strobel, S. A. (2017). Mycofumigation through production of the volatile DNA-methylating agent N-methyl-N-nitrosoisobutyramide by fungi in the genus Muscodor. The Journal of Biological Chemistry, 292(18), 7358-7371. doi:10.1074/jbc.M117.779009. Insam, H., & Seewald, M. S. A. (2010). Volatile organic compounds (voc) in soils. Biology and Fertility of Soils, 46(3), 199-213. doi:10.1007/s00374-010-0442-3. Isaac, J., 1905. Report of the commissioner appointed to investigate the prevalence of Trypeta Ludens in Mexico: Districts affected by the orange worm. Nature, habits, and extension of the pest. Methods adopted for its control. Danger to be apprehended from its introduction, etc. Sacramento, EE. UU.: WW Shannon, Superintendent State Printing. Jaber, L. R., & Vidal, S. (2010). Fungal endophyte negative effects on herbivory are enhanced on intact plants and maintained in a subsequent generation. Ecological Entomology, 35(1), 25-36. doi:10.1111/j.1365- 2311.2009.01152.x Jeanbourquin, P., & Guerin, P. M. (2007a). Chemostimuli implicated in selection of oviposition substrates by the stable fly Stomoxys calcitrans. Medical and Veterinary Entomology, 21(3), 209-216. doi:10.1111/j.1365- 2915.2007.00685.x Jeanbourquin, P., & Guerin, P. M. (2007b). Sensory and behavioural responses of the stable fly Stomoxys calcitrans to rumen volatiles. Medical and Veterinary Entomology, 21(3), 217-224. doi:10.1111/j.1365-2915.2007.00686.x. Jones, O. T. (1998). Practical applications of pheromones and other semiochemicals. En P. E. Howse, I. D. R. Stevens, & O. T. Jones (Eds.), Insect pheromones and their use in pest management (pp. 263-355). Londres, Inglaterra: Chapman & Hall. Joo, Y., Schuman, M. C., Goldberg, J. K., Kim, S.-G., Yon, F., Brütting, C., & Baldwin, I. T. (2017). Herbivore-induced volatile blends with both “fast” and “slow” components provide robust indirect defense in nature. Functional Ecology, 32, 136-149. doi:10.1111/1365-2435.12947. Kai, M., Effmert, U., Berg, G., & Piechulla, B. (2007). Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Archives of Microbiology, 187(5), 351-360. doi:10.1007/s00203- 006-0199-0 Kai, M., Haustein, M., Molina, F., Petri, A., Scholz, B., & Piechulla, B. (2009). Bacterial volatiles and their action potential. Applied Microbiology and Biotechnology, 81(6), 1001-1012. doi:10.1007/s00253-008-1760-3. Kanchiswamy, C. N., Malnoy, M., & Maffei, M. E. (2015a). Bioprospecting bacterial and fungal volatiles for sustainable agriculture. Trends in Plant Science, 20(4), 206-211. doi:10.1016/j.tplants.2015.01.004. Kanchiswamy, C. N., Malnoy, M., & Maffei, M. E. (2015b). Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Frontiers in Plant Science, 6, 151. doi:10.3389/fpls.2015.00151. Keiser, I., Jacobson, M., Nakagawa, S., Miyashita, D. H., & Harris, E. J. (1976). Mediterranean Fruit Fly: Attraction of females to acetic acid and acetic anhydride, to two chemical intermediates in the manufacture of Cue-lure and to decaying Hawaiian tephritids. Journal of Economic Entomology, 69(4), 517-520. doi:10.1093/jee/69.4.517. Kessler, A., & Baldwin, I. T. (2001). Defensive function of herbivore-induced plant volatile emissions in nature. Science, 291(5511), 2141-2144. doi:10.1126/ science.291.5511.2141. Kishimoto, K., Matsui, K., Ozawa, R., & Takabayashi, J. (2007). Volatile 1-octen-3-ol induces a defensive response in Arabidopsis thaliana. Journal of General Plant Pathology, 73(1), 35-37. doi:10.1007/s10327-006-0314-8. Kleiber, J. R., Unelius, C. R., Lee, J. C., Suckling, D. M., Qian, M. C., & Bruck, D. J. (2014). Attractiveness of fermentation and related products to Spotted Wing Drosophila (Diptera: Drosophilidae). Environmental Entomology, 43(2), 439-447. doi:10.1603/EN13224. Korpi, A., Jarnberg, J., & Pasanen, A. L. (2009). Microbial volatile organic compounds. Critical Reviews in Toxicology, 39(2), 139-193. doi:10.1080/10408440802291497. Krcmar, S., Mikuska, A., & Merdic, E. (2006). Response of Tabanidae (Diptera) to different natural attractants. Journal of Vector Ecology, 31(2), 262-265. Lacey, L. A., Horton, D. R., Jones, D. C., Headrick, H. L., & Neven, L. G. (2009). Efficacy of the biofumigant fungus Muscodor albus (Ascomycota: Xylariales) for control of Codling Moth (Lepidoptera: Tortricidae) in simulated storage conditions. Journal of Economic Entomology, 102(1), 43-49. doi:10.1603/029.102.0107. Lacey, L. A., & Neven, L. G. (2006). The potential of the fungus, Muscodor albus, as a microbial control agent of potato tuber moth (Lepidoptera: Gelechiidae) in stored potatoes. Journal of Invertebrate Pathology, 91(3), 195- 198. doi:10.1016/j.jip.2006.01.002. Lebreton, S., Borrero-Echeverry, F., Gonzalez, F., Solum, M., Wallin, E.A., Hedenström, E., ... Witzgall, P. (2017). A Drosophila female pheromone elicits species-specific long-range attraction via an olfactory channel with dual specificity for sex and food. BMC Biology, 15, 88. doi:10.1186/s12915-017-0427-x. Lee, J. C., Burrack, H. J., Barrantes, L. D., Beers, E. H., Dreves, A. J., Hamby, K. A., ... Bruck, D. J. (2012). Evaluation of monitoring traps for Drosophila suzukii (Diptera: Drosophilidae) in North America. Journal of Economic Entomology, 105(4), 1350-1357. doi:10.1603/ EC12132. Lee, S. O., Kim, H. Y., Choi, G. J., Lee, H. B., Jang, K. S., Choi, Y. H., & Kim, J. C. (2009). Mycofumigation with Oxyporus latemarginatus EF069 for control of postharvest apple decay and Rhizoctonia root rot on moth orchid. Journal of Applied Microbiology, 106(4), 1213-1219. doi:10.1111/j.1365-2672.2008.04087.x. Lemfack, M. C., Nickel, J., Dunkel, M., Preissner, R., & Piechulla, B. (2014). mVOC: a database of microbial volatiles. Nucleic Acids Research, 42(Database issue), D744-748. doi:10.1093/nar/gkt1250. Li, Q., Ning, P., Zheng, L., Huang, J., Li, G., & Hsiang, T. (2012). Effects of volatile substances of Streptomyces globisporus JK-1 on control of Botrytis cinerea on tomato fruit. Biological Control, 61(2), 113-120. doi:10.1016/j. biocontrol.2011.10.014. Li, Q., Ning, P., Zheng, L., Huang, J., Li, G., & Hsiang, T. (2012). Effects of volatile substances of Streptomyces globisporus JK-1 on control of Botrytis cinerea on tomato fruit. Biological Control, 61(2), 113-120. doi:10.1016/j. biocontrol.2011.10.014. Liu, W.-w., Mu, W., Zhu, B.-y., Du, Y.-c., & Liu, F. (2008). Antagonistic activities of volatiles from four strains of Bacillus spp. and Paenibacillus spp. against soil-borne plant pathogens. Agricultural Sciences in China, 7(9), 1104- 1114. doi:10.1016/s1671-2927(08)60153-4. Liu, X.-M., & Zhang, H. (2015). The effects of bacterial volatile emissions on plant abiotic stress tolerance.Frontiers in Plant Science, 6, 774. doi:10.3389/fpls.2015.00774 Madubunyi, L. C., Hassanali, A., Ouma, W., Nyarango, D., & Kabii, J. (1996). Chemoecological role of mammalian urine in host location by tsetse, Glossina spp. (Diptera: Glossinidae). Journal of Chemical Ecology, 22(6), 1187- 1199. doi:10.1007/bf02027954. Majeed, S., Hill, S. R., Birgersson, G., & Ignell, R. (2016). Detection and perception of generic host volatiles by mosquitoes modulate host preference: context dependence of (R)-1-octen-3-ol. Royal Society Open Science, 3(11), 160467. doi:10.1098/rsos.160467. Mangan, R. L., & Thomas, D. B. (2014). Comparison of torula yeast and various grape juice products as attractants for mexican fruit fly (Diptera: Tephritidae). Journal of Economic Entomology, 107(2), 591-600. doi:10.1603/ EC12376. Martínez, G. S., & López, F. H. (2010). Manual técnico del trampeo preventivo contra moscas exóticas de la fruta. Recuperado de http://www.programamoscamed.mx/EIS/biblioteca/ libros/manualp/Manual%20Operativo%20Trampeo%20 Moscas%20Exoticas_2010_%20.pdf Martini, X., Pelz-Stelinski, K. S., & Stelinski, L. L. (2014). Plant pathogen-induced volatiles attract parasitoids to increase parasitism of an insect vector. Frontiers in Ecology and Evolution, 2, 8. doi:10.3389/fevo.2014.00008. Mazor, M., Gothilf, S., & Galun, R. (1987). The role of ammonia in the attraction of females of the Mediterranean fruit fly to protein hydrolysate baits. Entomologia Experimentalis et Applicata, 43(1), 25-29. doi:10.1111/j.1570-7458.1987.tb02198.x. McPhail, M. (1939). Protein lures for fruit flies. Journal of Economic Entomology, 32(6), 758-761. doi:10.1093/ jee/32.6.758. Meats, A., Clift, A., & Perepelicia, N. (2002). Performance of permanent and supplementary traps for Mediterranean and Queensland fruit flies in South Australia 1975-2001: Comparison of male lure and food lure traps. General and Applied Entomology, 31, 53. Meats, A. W., Clift, A. D., & Robson, M. K. (2003). Incipient founder populations of mediterranean and queensland fruit flies in Australia: the relation of trap catch to infestation radius and models for quarantine radius. Australian Journal of Experimental Agriculture, 43(4), 397- 406. doi:10.1071/EA02070. Méndez-Vilas, A. (2013). Microbial pathogens and strategies for combating them: Science, technology and education. Badajoz, España: Formatex Research Center Mercier, J., & Jiménez, J. I. (2004). Control of fungal decay of apples and peaches by the biofumigant fungus Muscodor albus. Postharvest Biology and Technolo, 31(1), 1-8. doi:10.1016/j.postharvbio.2003.08.004. Minerdi, D., Bossi, S., Maffei, M. E., Gullino, M. L., & Garibaldi, A. (2011). Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compound (mvoc) emission. FEMS Microbiology Ecology, 76(2), 342- 351. doi:10.1111/j.1574-6941.2011.01051.x. Mitchell, A. M., Strobel, G. A., Moore, E., Robison, R., & Sears, J. (2010). Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiology, 156(Pt. 1), 270-277. doi:10.1099/mic.0.032540-0. Miyagawa, H., Inoue, M., Yamanaka, H., Tsurushima, T., & Ueno, T. (2000). Chemistry of spore germination selfinhibitors from the plant pathogenic fungus Colletotrichum fragariae. In D. R. Baker, & N. Ken Umetsu (Eds.), Agrochemical discovery: Insect, weed, and fungal control (pp. 62-71). Washington, EE. UU.: American Chemical Society Mukabana, W. R., Mweresa, C. K., Otieno, B., Omusula, P., Smallegange, R. C., Van Loon, J. J. A., & Takken, W. (2012). A novel synthetic odorant blend for trapping of malaria and other African mosquito species. Journal of Chemical Ecology, 38(3), 235-244. doi:10.1007/s10886-012-0088-8 Organización de las Naciones Unidas para la Agricultura y la Alimentación/International Atomic Energy Agency (fao/iaea). (2009). Development of bait stations for fruit fly suppression in support of sit (Reporte IAEA-314. D4 08CT11588, Report and recommendations of a consultants group meeting, Mazatlan, Mexico, 30 October1 November 2008). Recuperado de http://www-naweb. iaea.org/nafa/ipc/public/ipc-bait-stations-january-2010. pdf. Park, Y. S., Dutta, S., Ann, M., Raaijmakers, J. M., & Park, K. (2015). Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds. Biochemical and Biophysical Research Communications, 461(2), 361-365. doi:10.1016/j. bbrc.2015.04.039 Peterson, A. (1925). A bait which attracts the Oriental Peach Moth (Laspeyresia molesta Busck). Journal of Economic Entomology, 18(1), 181-190. doi:10.1093/jee/18.1.181. Pickett, J. A., & Khan, Z. R. (2016). Plant volatile-mediated signalling and its application in agriculture: successes and challenges. The New Phytolist, 212(4), 856-870. doi:10.1111/nph.14274 Pinto, M. C., Campbell-Lendrum, D. H., Lozovei, A. L., Teodoro, U., & Davies, C. R. (2001). Phlebotomine sandfly responses to carbon dioxide and human odour in the field. Medical and Veterinary Entomology, 15(2), 132-139. doi:10.1046/j.1365-2915.2001.00294.x. Piñero, J., Aluja, M., Vázquez, A., Equihua, M., & Varón, J. (2003). Human urine and chicken feces as fruit fly (Diptera: Tephritidae) attractants for resource-poor fruit growers. Journal of Economical Entomology, 96(2), 334- 340. doi:10.1603/0022-0493-96.2.334. Piñero, J. C., Enkerlin, W., & Epsky, N. D. (2014). Recent developments and applications of bait stations for integrated pest management of Tephritid Fruit Flies. En T. Shelly, N. Epsky, E. B. Jang, J. Reyes-Flores, & R. Vargas (Eds.), Trapping and the detection, control, and regulation of Tephritid Fruit Flies: Lures, area-wide programs, and trade implications (pp. 457-492). Dordrecht, Holanda: Springer. Planes, S. (1959). Estado actual de los medios de lucha contra la mosca de los frutos, Ceratitis capitata, y mosca del olivo, Dacus oleae. Boletín de Patología Vegetal y Entomología Agrícola, 24, 51-66. Prokopy, R. J. (1975). Apple maggot control by sticky red spheres. Journal of Economic Entomology, 68(2), 197-198. doi:10.1093/jee/68.2.197. Quesada, R., Triana, E., Vargas, G., Douglass, J. K., Seid, M. A., Niven, J. E., ... Wcislo, W. T. (2011). The allometry of cns size and consequences of miniaturization in orb-weaving and cleptoparasitic spiders. Arthropod Structure & Development, 40(6), 521-529. doi:10.1016/j. asd.2011.07.002. Quilici, S., Franck, A., Duyck, P. F., Rousse, P., Ryckewaert, P., & Simiand, C. (2007). Development of improved attractants and their integration into fruit fly SIT management programmes: final report for the period 2001-2005. Recuperado de https://www-pub.iaea.org/MTCD/ publications/PDF/te_1574_web.pdf. Raz, D. (1997). The phenology of the fig fly and its control. Acta horticulturae, 480, 207-208. doi:10.17660/ ActaHortic.1998.480.35. Robacker, D. C., García, J. A., & Bartelt, R. J. (2000). Volatiles from duck feces attractive to Mexican fruit fly. Journal of Chemical Ecology, 26(8), 1849-1867. doi:10.1023/a:1005544723521. Robacker, D. C., & Warfield, W. C. (1993). Attraction of both sexes of Mexican fruit fly, Anastrepha ludens, to a mixture of ammonia, methylamine, and putrescine. Journal of Chemical Ecology, 19(12), 2999-3016. doi:10.1007/ bf00980598. Romoli, R., Papaleo, M. C., De Pascale, D., Tutino, M. L., Michaud, L., LoGiudice, A., ... Bartolucci, G. (2013). GC-MS volatolomic approach to study the antimicrobial activity of the antarctic bacterium Pseudoalteromonas sp. TB41. Metabolomics, 10(1), 42-51. doi:10.1007/s11306- 013-0549-2. Ros, J. P., Escobar, I., García Tapia, F. J., & Aranda, G. (1999). Pilot experiment to control Medfly, Ceratitis capitata (Wied.) (Diptera: Tephritidae) using mass trapping technique in a custard apple (Annona cherimola Mill.) orchard. Fifth International Symposium on Fruit Flies of Economi Importance (pp. 639-643). Penang, Malasya: Penerbit Universiti Sains Malaysia. Roy, A., Singh, S. K., Bajpai, J., & Bajpai, A. K. (2014). Controlled pesticide release from biodegradable polymers. Central European Journal of Chemistry, 12(4), 453-469. doi:10.2478/s11532-013-0405-2. Rudrappa, T., Biedrzycki, M. L., Kunjeti, S. G., Donofrio, N. M., Czymmek, K. J., Paré, P. W., & Bais, H. P. (2010). The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Communicative and Integrative Biology, 3(2), 130-138. doi:10.4161/cib.3.2.10584. Ryan, R. P., & Dow, J. M. (2008). Diffusible signals and interspecies communication in bacteria. Microbiology, 154 (Pt 7), 1845-1858. doi:10.1099/mic.0.2008/017871-0. Schalchli, H., Tortella, G. R., Rubilar, O., Parra, L., Hormazabal, E., & Quiroz, A. (2016). Fungal volatiles: An environmentally friendly tool to control pathogenic microorganisms in plants.Critical Reviews in Biotechnology, 36(1), 144-152. doi:10.3109/07388551.2014.946466. Schofield, S., & Brady, J. (1997). Effects of carbon dioxide, acetone and 1-octen-3-ol on the flight responses of the stable fly, Stomoxys calcitrans, in a wind tunnel. Physiological Entomology, 22(4), 380-386. Schulz, S., Dickschat, J. S., Kunze, B., Wagner-Dobler, I., Diestel, R., & Sasse, F. (2010). Biological activity of volatiles from marine and terrestrial bacteria. Marine Drugs, 8(12), 2976-2987. doi:10.3390/md8122976. Schunemann, M. A. (1984). Programa Mosca del Mediterráneo. Recuperado de http://www.programamoscamed.mx/ EIS/biblioteca/libros/libros/P.M.M%20_1984.pdf. Shelly, T., Nishimoto, J., & Kurashima, R. (2012). Trap capture of three economically important fruit fly species (Diptera: Tephritidae): evaluation of a solid formulation containing multiple male lures in a Hawaiian coffee field. Journal of Economic Entomolgy, 105(4), 1186-1193. doi:10.1603/EC11371 Shi, X., Chen, G., Tian, L., Peng, Z., Xie, W., Wu, Q., ... Zhang, Y. (2016). The salicylic acid-mediated release of plant volatiles affects the host choice of Bemisia tabaci. International Journal of Molecular Sciences, 17(7), 1048. doi:10.3390/ijms17071048. Song, G. C., & Ryu, C.-M. (2013). Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions.International Journal of Molecular Sciences, 14(5), 9803-9819. doi:10.3390/ijms14059803. Spinelli, F., Cellini, A., Marchetti, L., Nagesh, K. M., & Piovene, C. (2011). Emission and function of volatile organic compounds in response to abiotic stress. En A. Shanker, & B. Venkateswarlu (Eds.), Abiotic Stress in Plants - Mechanisms and Adaptations (pp. 367-394). Rijeka, Croatia: InTech. Splivallo, R., Fischer, U., Göbel, C., Feussner, I., & Karlovsky, P. (2009). Truffles regulate plant root morphogenesis via the production of auxin and ethylene. Plant Physiology, 150, 2018-2029. doi:10.1104/pp.109.141325. Starr, D. F., & Shaw, J. G. (1944). Pyridine as an attractant for the Mexican fruitfly. Journal of Economic Entomology, 37(6), 760-763. doi:10.1093/jee/37.6.760. Stensmyr, M. C., Dweck, H. K., Farhan, A., Ibba, I., Strutz, A., Mukunda, L., ... Bill, S. (2012). A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell, 151(6), 1345-1357. doi:10.1016/j. cell.2012.09.046. Strobel, G. (2006). Muscodor albus and its biological promise. Journal of Industrial Microbiology and Biotechnology, 33(7), 514. doi:10.1007/s10295-006-0090-7. Tahir, H. A. S., Gu, Q., Wu, H., Raza, W., Hanif, A., Wu, L., ... Gao, X. (2017). Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Frontiers in Microbiology, 8, 171. doi:10.3389/ fmicb.2017.00171. Tangtrakulwanich, K., Albuquerque, T., Brewer, G. J., Baxendale, F. P., Zurek, L., Miller, ... Zhu, J. J. (2015). Behavioural responses of stable flies to cattle manure slurry associated odourants. Medical and Veterinary Entomology, 29(1), 82-87. doi:10.1111/mve.12103. Trombetta, D., Castelli, F., Sarpietro, M. G., Venuti, V., Cristani, M., Daniele, C., ... Bisignano, G. (2005). Mechanisms of antibacterial action of three monoterpenes. Antimicrobial Agents Chemotherapy, 49(6), 2474-2478. doi:10.1128/AAC.49.6.2474-2478.2005. Vargas, R. I., Mau, R. L., & Jang, E. B. (2007). The Hawaii fruit fly area-wide pest management program: Accomplishments and future directions. Proceedings of Hawaiian Entomological Society, 39, 99-104. Vargas, R. I., Souder, S. K., MacKey, B., Cook, P., Morse, J. G., & Stark, J. D. (2012). Field trials of solid triple lure (Trimedlure, methyl eugenol, raspberry ketone, and ddvp) dispensers for detection and male annihilation of Ceratitis capitata, Bactrocera dorsalis, and Bactrocera cucurbitae (Diptera: Tephritidae) in Hawaii. Journal of Economic Entomology, 105(5), 1557-1565. doi:10.1603/ EC12122. Vargas, R. I., Stark, J. D., Kido, M. H., Ketter, H. M., & Whitehand, L. C. (2000). Methyl eugenol and cue-lure traps for suppression of male oriental fruit flies and melon flies (Diptera: Tephritidae) in Hawaii: effects of lure mixtures and weathering. Journal of Economic Entomology, 93(1), 81-87. doi:10.1603/0022-0493-93.1.81. Wan, M., Li, G., Zhang, J., Jiang, D., & Huang, H.-C. (2008). Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biological Control, 46(3), 552-559. doi:10.1016/j.biocontrol.2008.05.015. Wheatley, R. E. (2002). The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek, 81(1-4), 357- 364. doi:10.1023/A:1020592802234. Xiao, Y., Wang, Q., Erb, M., Turlings, T. C. J., Ge, L., Hu, L., ... Lou, Y. (2012). Specific herbivore-induced volatiles defend plants and determine insect community composition in the field. Ecology Letters, 15(10), 1130- 1139. doi:10.1111/j.1461-0248.2012.01835.x. Yanagawa, A., Fujiwara-Tsujii, N., Akino, T., Yoshimura, T., Yanagawa, T., & Shimizu, S. (2011). Musty odor of entomopathogens enhances disease-prevention behaviors in the termite Coptotermes formosanus. Journal of Invertebrate Pathology, 108(1), 1-6. doi:10.1016/j. jip.2011.06.001. Yee, W. L., Lacey, L. A., & Bishop, B. J. B. (2009). Pupal mortality and adult emergence of western cherry fruit fly (Diptera: Tephritidae) exposed to the fungus Muscodor albus (Xylariales: Xylariaceae). Journal of Economic Entomology, 102(6), 2041-2047. doi:10.1603/029.102.0604. Yetter, W. P., & Steiner, L. F. (1931). A preliminary report on large-scale bait trapping of the oriental fruit moth in Indiana and Georgia. Journal of Economic Entomology, 24(1), 1181-1197. doi:10.1093/jee/24.6.1181. Zhang, A., Linn, J. C., Wright, S., Prokopy, R., Reissig, W., & Roelofs, W. (1999). Identification of a new blend of apple volatiles attractive to the Apple Maggot, Rhagoletis pomonella. Journal of Chemical Ecology, 25(6), 1221-1232. doi:10.1023/a:1020910305873. Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ info:eu-repo/semantics/openAccess application/pdf application/pdf Colombia ‎‎Corporación colombiana de investigación agropecuaria - AGROSAVIA Bogotá (Colombia)