Enzymatic conversion as a method of producing biologically active peptides

The growth of food products output volume including dairy products enriched by food ingredients with different biological effects is caused by deterioration of socioeconomic conditions, unstable ecological situation and unbalanced nutrition. The basic types of milk proteins proteolysis and the benefit of enzymatic catalysis over alkaline and acid have been considered. The data relating to usage of milk proteins hydrolysates in different fields of specialized and medioprophylactic nutrition depending on degree of hydrolysis and molecular weight of peptides have been presented. The substrate specificity of enzymatic preparations used in dairy industry in respect to impart the specified functional properties to milk protein has been analyzed. The impact of free amino-acids content in hydrolysates and the necessity to select enzymatic composition subject to the data relating to amino-acid sequence of protein and ferment substrate specificity has been described. Herewith protein hydrolysate obtaining with acceptable organoleptic properties and predicted biological effects is possible. The investigation analysis in the field of the functional products manufacture using protein containing milk raw material for production of protein compositions with the following creation of products on their basis has been carried out. The possibility to use the strategies of the directed enzymatic hydrolysis on obtaining of peptide compositions possessing hypotensive properties due to inhibition of angiotensin-1-converting ferment (ACF) by short oligopeptides has been demonstrated. Moreover, milk protein hydrolysates contain short peptides possessing cytoprotective and immunomodulatory action. Besides, milk protein hydrolysates exhibited the presence of antioxidant activity regarding different radicals in the systems with lipids oxidation.

Guardado en:
Detalles Bibliográficos
Autores principales: Agarkova, E. Yu., Kruchinin, A. G.
Formato: Journal Contribution biblioteca
Idioma:Russian
Publicado: 2018
Materias:Functional properties, Hydrolysis, Enzymes, Biological effects, Функциональные свойства, Гидролиз, Ферменты, Биологические эффекты, Biotechnology of Food Products and Biologically Active Substances, Биотехнология пищевых продуктов и биологически активных веществ,
Acceso en línea:http://hdl.handle.net/1834/41514
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!